Summary
5/24/16, 1:10:27 PM

Differences exist between documents.

New Document: Old Document:
PowerAPI_SAND_V1.3 PowerAPI SAND_V1.2(1)
132 pages (1.55 MB) 121 pages (1.52 MB)
5/24/16, 1:09:38 PM 5/24/16, 1:09:30 PM

Used to display results.

Get started: first change is on page 1.

No pages were deleted

How to read this report

BEERIER indicates a change.

DPeleted indicates deleted content.
indicates pages were changed.
indicates pages were moved.

file://NoURLProvided[5/24/16, 1:10:30 PM]

SANDIA REPORT

SAND2016-4446
Unlimited Release
Printed (May 2016

High Performance Computing - Power
Application Programming Interface
Specification

Version 1.3

James H. Laros lll, David DeBonis, Ryan Grant, Suzanne M. Kelly,
Michael Levenhagen, Stephen Olivier, Kevin Pedretti

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Compare: Replace�
text
[Old text]: "SAND2016-1938"
[New text]: "SAND2016-4446"

Compare: Replace�
text
[Old text]: "February"
[New text]: "May"

Compare: Replace�
text
[Old text]: "1.2"
[New text]: "1.3"

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

SAND2016-4446
Unlimited Release
Printed May 2016

High Performance Computing - Power Application
Programming Interface Specification
Version 1.3

James H. Laros III, David DeBonis, Ryan E. Grant,
Suzanne M. Kelly, Michael Levenhagen, Stephen Olivier, Kevin Pedretti
Center for Computing Research
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1319
jhlaros,ddeboni,regrant,smkellygmjleven,slolivi,ktpedre @sandia.gov

Abstract

Measuring and controlling the power and energy consumption of high performance computing
systems by various components in the software stack is an active research area [13}13}15,110} 4,21,
19.116,17, 117,20, 18, 11} 1} 16, 14} 12]. Implementations in lower level software layers are beginning
to emerge in some production systems, which is very welcome. To be most effective, a portable
interface to measurement and control features would significantly facilitate participation by all
levels of the software stack. We present a proposal for a standard power Application Programming
Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces
to the input from the computer facility manager.

Compare: Replace�
text
[Old text]: "SAND2016-1938"
[New text]: "SAND2016-4446"

Compare: Replace�
text
[Old text]: "February"
[New text]: "May"

Compare: Replace�
text
[Old text]: "jhlaro,"
[New text]: "jhlaros,ddeboni,rerant,smkellymjlvn,slolivi,ktpedre@sandia.gov"

Compare: Replace�
text
[Old text]: "eyesddeboni,rerant,smkll,mjlven,slolivi,ktpedre@sandia.gov"
[New text]: ",ee"

Compare: Replace�
text
[Old text]: "1.2"
[New text]: "1.3"

Acknowledgment

Support for this work was provided through the Advanced Simulation and Computing (ASC) pro-
gram funded by U.S. Department of Energy’s National Nuclear Security Agency. We wish to thank
our colleagues, Steve Hammond, Ryan Elmore, and Kris Munch at the National Renewable En-
ergy Laboratory (NREL) for their contributions to the use case model which was the progenitor of
this work. This effort was greatly enhanced by interactions with staff throughout Sandia as well as
many external organizations.

Prior to the first open release of this specification a select group of individuals agreed to re-
view an early draft of the specification and provide feedback. We would like to recognize the very
significant contributions these individuals made and thank them for their time and efforts. The
following individuals participated in an all day face-to-face review of the specification and pro-
vided written feedback (listed in alphabetical order): David Jackson (Adaptive Computing), Steve
Martin (Cray), Indrani Paul (AMD), Phil Pokorny (Penguin Computing), Avi Purkayastha (Na-
tional Renewable Energy Laboratory), Muralidhar Rajappa (Intel), and Jeff Stuecheli (IBM). The
following individuals provided written feedback of the specification (listed in alphabetical order):
Dorian Arnold (University of New Mexico), Natalie Bates (EEHPC), and Chung-Hsing Hsu (Oak
Ridge National Laboratory). We hope to continue these important collaborations and develop new
ones in an effort to represent and serve the HPC community as best we can.

Contents

(L Introduction|

(1.1 Background)

(1.3 Use Case Development]

(1.4 Security Modell. e

¥

Theory of Operation|

Type Definitions|

[3.1 Opaque Types|.

[3.2 Globally Relevant Definitions|

[3.3 Context Relevant Type Definitions|

PWR _CntXtIYPE] . . o ooee oot

[3.4 Object Relevant Type Definitions|

13
13
14
14

16

17
17
17
17
18
21
22

22

Compare: Replace�
text
[Old text]: "12"
[New text]: "13"

Compare: Replace�
text
[Old text]: "12"
[New text]: "13"

Compare: Replace�
text
[Old text]: "13"
[New text]: "14"

Compare: Replace�
text
[Old text]: "13"
[New text]: "14"

Compare: Replace�
text
[Old text]: "15"
[New text]: "16"

Compare: Replace�
text
[Old text]: "16"
[New text]: "17"

Compare: Replace�
text
[Old text]: "16"
[New text]: "17"

Compare: Replace�
text
[Old text]: "16"
[New text]: "17"

Compare: Replace�
text
[Old text]: "16"
[New text]: "17"

Compare: Replace�
text
[Old text]: "17"
[New text]: "18"

Compare: Replace�
text
[Old text]: "20"
[New text]: "21"

Compare: Replace�
text
[Old text]: "21"
[New text]: "22"

Compare: Replace�
text
[Old text]: "21"
[New text]: "22"

Compare: Replace�
text
[Old text]: "23"
[New text]: "25"

Compare: Replace�
text
[Old text]: "23"
[New text]: "25"

Compare: Replace�
text
[Old text]: "23"
[New text]: "25"

Compare: Replace�
text
[Old text]: "23"
[New text]: "25"

Compare: Replace�
text
[Old text]: "24"
[New text]: "26"

Compare: Replace�
text
[Old text]: "25"
[New text]: "27"

Compare: Replace�
text
[Old text]: "25"
[New text]: "27"

Compare: Replace�
text
[Old text]: "25"
[New text]: "28"

PWR_AMINAME]. . - . o e oe ettt e 29
[PWR_AttrDataType|.o 29

PWR_AttrA. EITOm ..o 29

[3.6 Metadata Relevant Type Definitions| 30
.. 30

(3.7 Error Return Defimitions| 30
(3.8 Time Related Definitions|. 31
PWRTIMEPEIO - . . o . cet et 32

[3.9 Statistics Relevant Type Definitions| 32
PWRIAMISIAD - - . ovoeee e e et e e e e 32

PWRID! ...t e 32

[3.10 OS Hardware Interface Type Definitions|. 33
PWR OperState].t e 33

[3.11 Application OS Interface Type Definitions| 33
[PWR RegionHint| 33

[PWR _Regionlntensity|. 34
PWRSIEEPSTAtE] oottt et e e e 34
PWRPELTSTAE]o oovv ettt e e e et 35

4 Core (Common) Interface Functions| 37
M1 Initralization.o o 37
[Function Prototype PWR CntxtInit()] 38

[Function Prototype for PWR_CntxtDestroy()|. 38

4.2 Hierarchy Navigation Functions| 39
[Function Prototype for PWR_CntxtGetEntryPoint()|. 39

6

Compare: Replace�
text
[Old text]: "26"
[New text]: "28"

Compare: Replace�
text
[Old text]: "26"
[New text]: "29"

Compare: Replace�
text
[Old text]: "27"
[New text]: "29"

Compare: Replace�
text
[Old text]: "27"
[New text]: "29"

Compare: Replace�
text
[Old text]: "27"
[New text]: "30"

Compare: Replace�
text
[Old text]: "28"
[New text]: "30"

Compare: Replace�
text
[Old text]: "28"
[New text]: "30"

Compare: Replace�
text
[Old text]: "29"
[New text]: "31"

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Replace�
text
[Old text]: "31"
[New text]: "33"

Compare: Replace�
text
[Old text]: "31"
[New text]: "33"

Compare: Replace�
text
[Old text]: "31"
[New text]: "33"

Compare: Replace�
text
[Old text]: "31"
[New text]: "33"

Compare: Replace�
text
[Old text]: "32"
[New text]: "34"

Compare: Replace�
text
[Old text]: "32"
[New text]: "34"

Compare: Replace�
text
[Old text]: "33"
[New text]: "35"

Compare: Replace�
text
[Old text]: "34"
[New text]: "37"

Compare: Replace�
text
[Old text]: "34"
[New text]: "37"

Compare: Replace�
text
[Old text]: "35"
[New text]: "38"

Compare: Replace�
text
[Old text]: "35"
[New text]: "38"

Compare: Replace�
text
[Old text]: "36"
[New text]: "39"

Compare: Replace�
text
[Old text]: "36"
[New text]: "39"

[Function Prototype for PWR_ObjGetType()[. L. 40

[Function Prototype for PWR_ObjGetName()| 40
[Function Prototype for PWR_ObjGetParent()|. 41
[Function Prototype for PWR_ObjGetChildren()|. 41
[Function Prototype for PWR_CntxtGetObjByName()| 42
4.3 Group Functions| e 43
[Function Prototype for PWR _GrpCreate()| 43
[Function Prototype for PWR_GrpDestroy()| 44
[Function Prototype for PWR_GrpAddObj()| oL, 44
[Function Prototype for PWR_GrpRemoveObj() 45
[Function Prototype for PWR_GrpGetNumObjs()|. 45
[Function Prototype for PWR_GrpGetObjByIndx()[. 46
[Function Prototype for PWR_GrpDuplicate()[. 46
[Function Prototype for PWR _GrpUnion()] 47
[Function Prototype for PWR_Grplntersection()] 47
[Function Prototype for PWR_GrpDifference()| 48
[Function Prototype for PWR_CntxtGetGrpByName()| 49
4.4 Attribute Functions| 49
[Function Prototype for PWR _ObjAttrGetValue()[. 50
[Function Prototype for PWR_ObjAttrSetValue()| 50
[Function Prototype for PWR StatusCreate()] 51
[Function Prototype for PWR _StatusDestroy()| 52
[Function Prototype for PWR_StatusPopError() 52
[Function Prototype for PWR StatusClear() 53
[Function Prototype for PWR_ObjAttrGetValues() 53
[Function Prototype for PWR_ObjAttrSetValues()[. 55

7

Compare: Replace�
text
[Old text]: "37"
[New text]: "40"

Compare: Replace�
text
[Old text]: "37"
[New text]: "40"

Compare: Replace�
text
[Old text]: "38"
[New text]: "41"

Compare: Replace�
text
[Old text]: "38"
[New text]: "41"

Compare: Replace�
text
[Old text]: "39"
[New text]: "42"

Compare: Replace�
text
[Old text]: "40"
[New text]: "43"

Compare: Replace�
text
[Old text]: "40"
[New text]: "43"

Compare: Replace�
text
[Old text]: "41"
[New text]: "44"

Compare: Replace�
text
[Old text]: "41"
[New text]: "44"

Compare: Replace�
text
[Old text]: "42"
[New text]: "45"

Compare: Replace�
text
[Old text]: "42"
[New text]: "45"

Compare: Replace�
text
[Old text]: "43"
[New text]: "46"

Compare: Replace�
text
[Old text]: "43"
[New text]: "46"

Compare: Replace�
text
[Old text]: "44"
[New text]: "47"

Compare: Replace�
text
[Old text]: "44"
[New text]: "47"

Compare: Replace�
text
[Old text]: "45"
[New text]: "48"

Compare: Replace�
text
[Old text]: "46"
[New text]: "49"

Compare: Replace�
text
[Old text]: "46"
[New text]: "49"

Compare: Replace�
text
[Old text]: "47"
[New text]: "50"

Compare: Replace�
text
[Old text]: "47"
[New text]: "50"

Compare: Replace�
text
[Old text]: "48"
[New text]: "51"

Compare: Replace�
text
[Old text]: "49"
[New text]: "52"

Compare: Replace�
text
[Old text]: "49"
[New text]: "52"

Compare: Replace�
text
[Old text]: "50"
[New text]: "53"

Compare: Replace�
text
[Old text]: "50"
[New text]: "53"

Compare: Replace�
text
[Old text]: "52"
[New text]: "55"

[Function Prototype for PWR_ObjAttrIsValid()|. .

[Function Prototype for PWR_GrpAttrGetValue()|

[Function Prototype for PWR_GrpAttrSetValue()|

[Function Prototype for PWR_GrpAttrGetValues()|

[Function Prototype for PWR_GrpAttrSetValues()|

[Function Prototype for PWR_ObjAttrGetMeta()|

[Function Prototype for PWR_ObjAttrSetMeta() .

[Function Prototype for PWR_MetaValue AtIndex(

N e

[Function Prototype for PWR_ObjCreateStat()| . .

[Function Prototype for PWR_GrpCreateStat()| . .

[Function Prototype for PWR _StatStart()].

[Function Prototype for PWR _StatStop().

[Function Prototype for PWR _StatClear()|

[Function Prototype for PWR _StatGetValue()| . . .

[Function Prototype for PWR _StatGetValues()| . .

[Function Prototype for PWR_StatGetReduce()|

[Function Prototype for PWR_GetMajor Version()|

[Function Prototype for PWR_GetMinorVersion()|

4.8 BigListof Attributes|............................

Compare: Replace�
text
[Old text]: "52"
[New text]: "55"

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "53"
[New text]: "56"

Compare: Replace�
text
[Old text]: "54"
[New text]: "57"

Compare: Replace�
text
[Old text]: "55"
[New text]: "58"

Compare: Replace�
text
[Old text]: "56"
[New text]: "59"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "57"
[New text]: "60"

Compare: Replace�
text
[Old text]: "58"
[New text]: "61"

Compare: Replace�
text
[Old text]: "59"
[New text]: "62"

Compare: Replace�
text
[Old text]: "60"
[New text]: "63"

Compare: Replace�
text
[Old text]: "61"
[New text]: "64FunctionPrototypeforPWRObjGetStat()"

Compare: Insert�
text
".........................66"

Compare: Insert�
annotation
Matching annotation not found

Compare: Insert�
text
"..........................66FunctionPrototypeforPWRGrpGetStats()"

Compare: Insert�
annotation
Matching annotation not found

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "62"
[New text]: "67"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "63"
[New text]: "68"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "64"
[New text]: "69"

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "64"
[New text]: "69"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "65"
[New text]: "70"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "65"
[New text]: "70"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "66"
[New text]: "71"

Compare: Delete�
graphic
Matching graphic not found

Compare: Insert�
annotation
Matching annotation not found

Compare: Insert�
text
".......................72FunctionPrototypeforPWRGrpGetReduce()"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "66"
[New text]: "74"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "68"
[New text]: "76"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "69"
[New text]: "76"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "69"
[New text]: "76"

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "69"
[New text]: "77"

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "69"
[New text]: "778"

4.9 BigListof Metadatal e 79

15 High-Level (Common) Functions| 83
[5.1 Report Functions| e 83
[Function Prototype PWR_GetReportByID()|. 83

6 Role/System Interfaces| 85
[6.1 Operating System, Hardware Interface| 85
[6.1.1 Supported Attributes|.......... 86
[6.1.2 Supported Core (Common) Functions| 88
[6.1.3 Supported High-Level (Common) Functions| 89
[6.1.4 Interface Specific Functions| i 89
[Function Prototype PWR _StateTransitDelay()| 89

[6.2 Monitor and Control, Hardware Interface| 90
[6.2.1 Supported Attributes|. 90
[6.2.2 Supported Core (Common) Functions| 92
[6.2.3 Supported High-Level (Common) Functions| 92
[6.2.4 Interface Specific Functions| 92

[6.3 Application, Operating System Interface|. 93
[6.3.1 Supported Attributes|.......... 93
[6.3.2 Supported Core (Common) Functions| 94
[6.3.3 Supported High-Level (Common) Functions| 95
[6.3.4 Interface Specific Functions| L. 95
[Function Prototype PWR_AppTuningHint()f. 95

[Function Prototype PWR _SetSleepStateLimit(){ 96

[Function Prototype for PWR_WakeUpLatency()| 97

[Function Prototype PWR_RecommendSleepState()| 97

Compare: Replace�
text
[Old text]: "71"
[New text]: "79"

Compare: Replace�
text
[Old text]: "758"
[New text]: "83"

Compare: Replace�
text
[Old text]: "75"
[New text]: "83"

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "75"
[New text]: "83"

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "77"
[New text]: "85"

Compare: Replace�
text
[Old text]: "77"
[New text]: "85"

Compare: Replace�
text
[Old text]: "78"
[New text]: "86"

Compare: Replace�
text
[Old text]: "80"
[New text]: "88"

Compare: Replace�
text
[Old text]: "80"
[New text]: "89"

Compare: Replace�
text
[Old text]: "80"
[New text]: "89"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "80"
[New text]: "89"

Compare: Replace�
text
[Old text]: "82"
[New text]: "90"

Compare: Replace�
text
[Old text]: "82"
[New text]: "90"

Compare: Replace�
text
[Old text]: "84"
[New text]: "92"

Compare: Replace�
text
[Old text]: "84"
[New text]: "92"

Compare: Replace�
text
[Old text]: "84"
[New text]: "92"

Compare: Replace�
text
[Old text]: "85"
[New text]: "93"

Compare: Replace�
text
[Old text]: "85"
[New text]: "93"

Compare: Replace�
text
[Old text]: "86"
[New text]: "94"

Compare: Replace�
text
[Old text]: "87"
[New text]: "95"

Compare: Replace�
text
[Old text]: "87"
[New text]: "95"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "87"
[New text]: "95"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "88"
[New text]: "96"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "88"
[New text]: "97"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "89"
[New text]: "97"

Compare: Insert�
text
"9"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

[Function Prototype for PWR_SetPerfState()]. 98

[Function Prototype for PWR_GetPerfState()] 09, .

|, [Function Prototype for PWR_GetSleepState()] 99

[6.4 User, Resource Manager Interface|. 101
[6.4.1 Supported Attributes|........... 101
[6.4.2 Supported Core (Common) Functions| 101
[6.4.3 Supported High-Level (Common) Functions| 101
[6.4.4 Interface Specific Functions| i L 101

[6.5 Resource Manager, Operating System Interface| 102
[6.5.1 Supported Attributes|........ 102
[6.5.2 Supported Core (Common) Functions| 104
[6.5.3 Supported High-Level (Common) Functions| 104
[6.5.4 Interface Specific Functions| 104

[6.6 Resource Manager, Monitor and Control Interface|.......................... 105
[6.6.1 Supported Attributes|. i e 105
[6.6.2 Supported Core (Common) Functions| 107
[6.6.3 Supported High-Level (Common) Functions| 107
[6.6.4 Interface Specific Functions| 107

6.7 Administrator, Monitor and Control Interface|................... 108
[6.7.1 Supported Attributes|. i e 108
[6.7.2 Supported Core (Common) Functions| 110
[6.7.3 Supported High-Level (Common) Functions| 110
[6.7.4 Interface Specific Functions| 110

[6.8 HPCS Manager, Resource Manager Interface|.............................. 111
[6.8.1 Supported Attributes|. i e 111

[6.8.2 Supported Core (Common) Functions| 111

10

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "90"
[New text]: "98"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "91"
[New text]: "99"

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
text
"9"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "91"
[New text]: "99"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "92"
[New text]: "101"

Compare: Replace�
text
[Old text]: "92"
[New text]: "101"

Compare: Replace�
text
[Old text]: "92"
[New text]: "101"

Compare: Replace�
text
[Old text]: "92"
[New text]: "101"

Compare: Replace�
text
[Old text]: "92"
[New text]: "101"

Compare: Replace�
text
[Old text]: "93"
[New text]: "102"

Compare: Replace�
text
[Old text]: "93"
[New text]: "102"

Compare: Replace�
text
[Old text]: "95"
[New text]: "104"

Compare: Replace�
text
[Old text]: "95"
[New text]: "104"

Compare: Replace�
text
[Old text]: "95"
[New text]: "104"

Compare: Replace�
text
[Old text]: "96"
[New text]: "105"

Compare: Replace�
text
[Old text]: "96"
[New text]: "105"

Compare: Replace�
text
[Old text]: "98"
[New text]: "107"

Compare: Replace�
text
[Old text]: "98"
[New text]: "107"

Compare: Replace�
text
[Old text]: "98"
[New text]: "107"

Compare: Replace�
text
[Old text]: "99"
[New text]: "108"

Compare: Replace�
text
[Old text]: "99"
[New text]: "108"

Compare: Replace�
text
[Old text]: "101"
[New text]: "110"

Compare: Replace�
text
[Old text]: "101"
[New text]: "110"

Compare: Replace�
text
[Old text]: "101"
[New text]: "110"

Compare: Replace�
text
[Old text]: "102"
[New text]: "111"

Compare: Replace�
text
[Old text]: "102"
[New text]: "111"

Compare: Replace�
text
[Old text]: "102"
[New text]: "11110"

[6.8.3 Supported High-Level (Common) Functions| 111

[6.8.4 Interface Specific Functions| i 111

[6.9 Accounting, Monitor and Control Interface]. 112

[6.9.1 Supported Attributes|......... 112

[6.9.2 Supported Core (Common) Functions| 114

[6.9.3 Supported High-Level (Common) Functions| 114

[6.9.4 Interface Specific Functions|, 114

[6.10 User, Monitor and Control Interface| 115

[6.10.1 Supported Attributes|.t e 115

[6.10.2 Supported Core (Common) Functions| 117

[6.10.3 Supported High-Level (Common) Functions| 117

[6.10.4 Interface Specific Functions| 117

[Z__Conclusionl 119

[References| 120
Appendix

A" Topics Under Consideration for Future Versions 123

(B Change Log| 125

11

Compare: Replace�
text
[Old text]: "102"
[New text]: "111"

Compare: Replace�
text
[Old text]: "10210"
[New text]: "111"

Compare: Replace�
text
[Old text]: "103"
[New text]: "112"

Compare: Replace�
text
[Old text]: "103"
[New text]: "112"

Compare: Replace�
text
[Old text]: "105"
[New text]: "114"

Compare: Replace�
text
[Old text]: "105"
[New text]: "114"

Compare: Replace�
text
[Old text]: "105"
[New text]: "114"

Compare: Replace�
text
[Old text]: "106"
[New text]: "115"

Compare: Replace�
text
[Old text]: "106"
[New text]: "115"

Compare: Replace�
text
[Old text]: "108"
[New text]: "117"

Compare: Replace�
text
[Old text]: "108"
[New text]: "117"

Compare: Replace�
text
[Old text]: "108"
[New text]: "117"

Compare: Replace�
text
[Old text]: "109"
[New text]: "119"

Compare: Replace�
annotation
The following annotation attributes were changed:
 other

Compare: Replace�
text
[Old text]: "110"
[New text]: "120"

Compare: Replace�
text
[Old text]: "112"
[New text]: "123"

Compare: Replace�
text
[Old text]: "114"
[New text]: "125"

Compare: Insert�
text
"12"

Chapter 1

Introduction

Achieving practical exascale supercomputing will require massive increases in energy efficiency.
The bulk of this improvement will likely be derived from hardware advances such as improved
semiconductor device technologies and tighter integration, hopefully resulting in more energy ef-
ficient computer architectures. Still, software will have an important role to play. With every
generation of new hardware, more power measurement and control capabilities are exposed. Many
of these features require software involvement to maximize feature benefits. This trend will allow
algorithm designers to add power and energy efficiency to their optimization criteria. Similarly,
at the system level, opportunities now exist for energy-aware scheduling to meet external utility
constraints such as time of day cost charging and power ramp rate limitations. Finally, future ar-
chitectures might not be able to operate all components at full capability for a range of reasons
including temperature considerations or power delivery limitations. Software will need to make
appropriate choices about how to allocate the available power budget given many, sometimes con-
flicting considerations.

For these reasons, we have developed a portable API for power measurement and control. This
Power API provides multiple levels of abstractions to satisty the requirements of multiple types of
users [9]. The remainder of this document describes the details of this Power API specification.

1.1 Background

We draw our inspiration from efforts such as the MPI forum’sﬂ process. We seek to develop a de
facto standard, led by a neutral national laboratory, which is funded by a neutral federal agency.
Community involvement is critical to the effort. The laboratory team has been garnering participa-
tion by making presentations at workshops and operational group meetings. We desire community
participation from university and other researchers, as well as HPC practitioners. Concurrent with
the specification development, the authors are creating a reference implementation comprising a
subset of the overall API functionality. This task is important to ensure that the specification is
usable. The ultimate goal, however, is that vendors of the hardware and software components
provide their own implementations. It is likely that some portion of these functions have already
been written by vendors, but with slightly different calling arguments. For portability sake, we are

Thttp://www.mpi-forum.org

134

Compare: Delete�
text
"12"

Compare: Move�
artifact
This artifact was moved from page 13 of old document

hopeful that the specific implementations can be melded to this proposed community API.

1.2 Motivation

The introductory paragraph above, offers a few examples where a Power API would be useful.
This document’s abstract provides references to a small subset of the current research activities
that would benefit from a community-adopted power API. Additional, more fleshed out examples
are described in the appendices of the Power/Energy Use Cases for High Performance Computing
document [9]. To provide the proper mindset for reading this document, we offer the following
list as well.

e A jobisentering a checkpoint phase. The application requests a reduced processor frequency
during the long 1/O period.

e A developer is trying to understand frequency sensitivity of an algorithm and starts a tool
that analyzes performance and power consumption while the job is running.

e Once an application’s power signature is analyzed, future job submissions give power hints
to the resource manager.

e A data center has a maximum of capacity of nn MW. One HPC system is down for extended
maintenance. Other systems can have a higher maximum power cap.

e For electric bills based on peak usage periods, determine a maximum HPC load that mini-
mizes loss of HPC use. Then direct the scheduler to enforce that peak usage.

1.3 Use Case Development

The Power/Energy Use Cases for High Performance Computing document [9] identifies the re-
quirements for the Power API. Rather than a list, the requirements are specified as formal use
cases employing the ISO/IEC 19501:2005 Unified Modeling Language (UML) standard, which is
described in the reference manual by Booch, et al. [2]. While the term use case has come to be
almost synonymous with scenario, the standard defines a use case model. The use case model does
include scenario-like requirement specifications, but it also clearly identifies the roles and scope
of the requirements. For this document, the key concepts from the use case model are actor and
system. Each identified actor plays a distinct role in using the power API. Actors can be persons,
other systems, or something else (e.g. cron, asynchronous event, etc.). For the Power API use
case model, an HPC computer is broken down into logical systems. By breaking down the re-
quirements into this use case model, we can clearly see the demarcation points requiring an API
between external actors and each system. And by subsequently viewing systems as actors to the
other systems, we obtain the complete set of necessary interfaces.

14

Compare: Move�
artifact
This artifact was moved from page 13 of old document to page 13 of this document

Compare: Move�
artifact
This artifact was moved from page 14 of old document

R Facility
Hardware

Y

Manager Manager Manage
HPCS | HPCS
HPCS User Resource Resource

. __Manager | Mana_ggr/
v

HPCS | HPCS
HPCS Admin Monitor & Monitor &
L Control | Control

v

" HPCS | HPCS
Acc%fxﬁiin Operating Operating
g System | System

Facility HPCS HPCS >
r

K

A

Y

ve

= v 4
Application HPCS
Hardware

Figure 1.1: Top Level Conceptual Diagram representing the culmination of all Use Case Diagrams
covered.

The specific actor/system pairs used for the power API are shown in Figure [I.1] The external
actors are shown on the left portion of the diagram. Systems are shown as rectangles. The four
systems conjoined with the actor symbol also serve as actors for some use cases. The ten sections
within Chapter [6] provide function specifications for the ten actor/system pairs (Role/System pairs
in the specification). The two missing interfaces are Facility Manager to Facility Hardware and
Facility Manager to HPCS manager. These were included in the use case model to identify the
boundaries of the specification and recognize important points of information input.

15

Compare: Move�
artifact
This artifact was moved from page 14 of old document to page 14 of this document

Compare: Move�
artifact
This artifact was moved from page 15 of old document

1.4 Security Model

The specification assumes traditional hardware (e.g. protection rings) and operating system sup-
port for access control. Implementations should only need traditional restrictions based on au-
thenticated individual identity and/or the groups to which the individual belongs. A super user is
likely needed as well. Depending on the implementation, the context structure (Section may
be sufficiently protected to allow for secure storage of access information. Future releases of the
specification will address security and policy considerations in more detail.

16

Compare: Move�
artifact
This artifact was moved from page 15 of old document to page 15 of this document

Compare: Move�
artifact
This artifact was moved from page 16 of old document

Chapter 2

Theory of Operation

2.1 Overview

This section discusses many of the foundational concepts leveraged throughout the Power API
specification. It should be noted that many terms commonly used when discussing object oriented
languages are used in this section and the document as a whole. The use of these terms in no way
implies that the Power API specification must be implemented using an object oriented language.
We have attempted to achieve two goals, listed in order of priority: 1) programmer portability,
where the programmer is the user of the API, and 2) the latitude of the implementor who will often
become the user of the API benefitting from our first priority.

2.2 Power API Initialization

Using any of the Power API interfaces requires initialization. Initializaton returns a context. In the
specification, the context is defined as an opaque pointer. This approach was taken to allow the
maximum amount of flexibility to the implementor. The context returned will contain (act as the
entry point to) the system description that is exposed to the user, all policy and privilege informa-
tion, basically everything the user of the API requires to perform the functionality specified by the
API. The system description is not required to be changed or updated during the life of a specific
context. Initialization is accomplished by calling PWR_CntxtInit () (section[d.I]). Resources cre-
ated, like groups, by the user during the life of the context should be cleaned up (destroyed) by
the user when no longer needed. The implementation is required to clean up all context resources
when the user calls PWR_CntxtDestroy (section d.T)).

2.3 Roles

The Power API specification leverages the concept of Roles. Roles represent the different types of
users that exist which include:

17

Compare: Move�
artifact
This artifact was moved from page 16 of old document to page 16 of this document

Compare: Move�
artifact
This artifact was moved from page 17 of old document

e Application The application or application library executing on the compute resource. May
also include run-time components running in user space.

e Monitor and Control Cluster management or Reliability Availability and Serviceability
(RAS) systems, for example.

e Operating System Linux or specialized Light Weight Kernels which are found on HPC
platforms and potentially portions of run-time systems.

e User The user of the HPC platform.

e Resource Manager This can include work load managers, schedulers, allocators and even
portions of run-time systems.

e Administrator The system administrator or HPC platform manager.

e HPCS Manager The individual or individuals responsible for managing policy for the HPC
platform, for example.

e Accounting Individual or software that produces reports of metrics for the HPC platform.

These brief definitions are not meant to be exhaustive. Roles are analogous with the Actors dis-
cussed in section [1.3| In some cases roles become the system that other roles interact with. For
example, we specify an interface between the Application role (HPCS Application in figure
and the Operating System (HPCS Operating System in figure [[.T). The Operating System is the
system (in UML terminology) that the Application role is interacting with. Notice in figure [I.T|that
the specification also includes an interface between the Operating System role and the Hardware
(HPCS Hardware in figure [I.T)). These and other interfaces are described in chapter [6] The user of
the API is required to specify what role they will assume when interacting with the system upon
initialization of the APIL.

Roles are also provided as a mechanism for the implementation to express priority or prece-
dence in circumstances where, for example, conflicting operations are requested.

2.4 System Description

The system description is the view of the system exposed to the user upon initialization via the
context that is returned. Figure [2.1] depicts an example of a system description showing a hierar-
chical arrangement of objects. All object types listed in the specification must be defined by any
implementation, but do not have to be used in the system description. The implementation chooses
which objects will be employed in the system description and how they will be arranged. An ob-
ject can only have a single parent but may have multiple children. Currently, a system description
may only describe a single platform and have a single object of type Platform which represents
the top of the hierarchy. Later revisions of the specification may include the ability to combine
multiple platforms in the system description. This might be useful, for example, in representing an
entire datacenter. While figure [2.1|{depicts a homogeneous system description, homogeneity is not
a requirement. In practice a system description can be heterogeneous and unbalanced.

To summarize the requirements:

18

Compare: Move�
artifact
This artifact was moved from page 17 of old document to page 17 of this document

Compare: Insert�
text
"18"

[Power Plane [Power Plane

NS

Figure 2.1: Hierarchical Depiction of System Objects

Compare: Replace�
text
[Old text]: "18"
[New text]: "19"

e The Platform object type must be defined by the implementation and must appear at the
top of the system description.

o All object types in this specification must be defined in any implementation. The use of the
object types, with the exception of the P1latform object type, is optional.

e Objects can only have one parent but may have many children. Currently the Platform
object has no parent since it appears at the top of the system description. This will likely
change in future versions of the specification.

e [f an implementation chooses to add objects not defined in the specification they should only
be exposed to the user in a vendor specific context to avoid unpredictable or non-portable
behaviour (see PWR_CntxtInit () section|4.1).

The following is a list of the object types currently included in the specification along with a
short description of each.

e Platform - Currently, the one and only Platform object is the top level object of the system
description exposed to the user of the API. The Platform object is intended to conceptually
represent the entire Platform. For example, if the Platform object has a power or energy
measurement or control capability exposed through the Platform objects attributes the scope
of these attributes should be platform wide.

e Cabinet - Objects of type Cabinet are intended to represent the cabinets or racks that act as
enclosures (or logical groupings) for the platform equipment. Beyond the utility of conve-
nient groups of lower level objects (equipment) cabinets may have power or energy relevant
capabilities which can be exposed through attributes associated with each Cabinet object.

e Chassis - Objects of type Chassis are intended to be used for finer grained organization of
objects within the higher level Cabinet object. Chassis, like cabinets may have power or
energy relevant capabilities that can be exposed to the user.

e Board - Board objects offer another method of organization for underlying objects (equip-
ment). Boards may also have power and or energy relevant capabilities which can be exposed
through associated attributes. For example, a board could contain the power supply and the
point of instrumentation for collecting power or energy samples for a node or multiple nodes.

e Node - The Node type is probably one of the most universally important object types. Mea-
suring and controlling the power and or energy characteristics of a node or multiple nodes
(grouped into multiple Boards, Chassis or Cabinets) is important for a many reasons and pro-
vides a wide range of flexibility of configuration to the implementor. For example, on HPC
platforms a single application typically executes on many nodes. Understanding the energy
use of an application run can be obtained by collecting the energy use (via the appropriate
Node attribute) for each node participating in that application execution. Node objects will
likely have many attributes exposing many power and energy relevant capabilities.

e Socket - The Socket object is intended to represent the one or more processor sockets, or
other component types that can be thought of as sockets, that make up a Node. For example,
a single Node object may be a dual socket (dual CPU) node. The implementor may choose
to enclose other component types (a NIC for example) within a Socket object, or add other
object types as they see fit to represent the architecture they are describing. They can also
decide to omit the use of this, or any other object type (currently other than Platform) in the
system description.

204

Compare: Delete�
text
"19"

Compare: Move�
artifact
This artifact was moved from page 20 of old document

e Power Plane - The Power Plane object is used to organize lower level objects (any types of
objects) within a power domain or single point of measurement and or control. For example,
a pair of cores may share a power plane within a socket. This configuration is depicted in
figure 2.1 This organization allows a pair of cores to be controlled from a single power
control point in the hierarchy for convenience. This object type allows these power and
energy relevant relationships to be expressed anywhere in the system description.

e Core - Core objects are intended to represent the individual processor cores within multi-
core CPUs (or possibly GPUs). Modern architectures have an increasing number of cores
per CPU (or GPU). In the near future it is likely that an abstraction between Socket and core
would become useful as the number of cores increase. Physical and logical groupings of
cores already exist in current architectures.

e Memory - The Memory object type is included to represent the growing range of memory
types that exist on HPC platforms. Individual cores, for example, have Memory in the form
of cache which the implementor may choose to organize differently from the main memory
of the Node or a tertiary level of memory such as NVRAM.

e NIC - The NIC object is intended to represent the Network Interface Controller. As with
many other object types, the organization of a NIC in relation to Boards, Nodes or even
Cores is architecture dependent. The NIC object type is included in hopes that there are
power and energy relevant capabilities included in future NICs.

@

Additional object types may be defined by the implementor and placed anywhere in the hier-
archy as long as the previously stated rules are not violated. Ultimately, the object types defined
in this specification, and those added by the implementor, will be used to produce a system de-
scription describing the system presented to the user via the context returned upon initialization.
Objects are used as interfaces to underlying functionality. The specification does not assume state
is retained for objects. Additionally, the specification makes no guarantees with regards to race
conditions between processes or threads.

2.5 Attributes

Attributes are an important part of the Power API. A large amount of basic functionality is ex-
posed through the use of attributes. The term attribute is used somewhat conceptually since some
attributes are implicit while others are explicitly defined as part of a required specification data
structure (page 29)) Attributes are used for a number of reasons such as to navigate through the
system description, to access information or a measurement (sensor information for example) and
for control (setting a P-state for example). Global attributes are attributes that are present for every
object defined; whether required by the specification or added by the implementor.

21

Compare: Insert�
text
"•HT-TheHT(HardwareThread)objectrepresentsanOS-visibleCPU.Whilefromaphysicalperspectivefrequencyandvoltagechangesoccuratthephysicalcorelevel,itisusuallythecasethatthesemustbeconﬁguredbysoftwareattheOS-visibleCPUlevel.Typicallythelowest-commondenominatoramongallOS-visibleCPUsisusedtoconﬁgurethephysicalcore."

Compare: Move�
artifact
This artifact was moved from page 21 of old document

Compare: Replace�
text
[Old text]: "26)."
[New text]: "29)."

The following is the list of global attributes:

e name - Unique identifying name of the object (see PWR_0ObjGetName on page [#0):

e entry point - The position in the hierarchy after initialization (see PWR_CntxtGetEntryPoint
on page 393

e type - The type of the object (see PWR_0bjGetType on page @0):

e parent - The parent of an object is the object that is above it in the hierarchy (see PWR_-
ObjGetParent on page @I)? The only exception is the currently single platform object
whose parent is a pointer to NULL.

e children - Object or objects directly below an object in the hierarchy (see PWR_0bjGetChild-

ren on page @I):

Note, in the list above all the attributes are implicit. Explicit attributes are defined in PWR_-
AttrName (page 29)) The majority of the attributes defined in the specification, and likely those
added by an implementator, are, and will be, explicit. The implicit attributes defined above are
primarily used for navigation and are accessed through attribute specific functions which are de-

scribed in Section

Explicit attributes are either accessed through the generic attribute interface (Section or
attribute specific functions found in either the section describing the specific interface in which
they are used or in Chapter 4, Core (Common) Interface Functions.

The attribute interface is intended to keep the specification from growing every time additional
functionality is either specified or added by an implementor. As long as the new functionality fits
within the defined attribute interfaces no additional API functions are required to be specified.

2.6 Metadata

Each object and object attribute pair can have additional descriptive metadata associated with it.
This information is often useful for getting a better understanding of the meaning of objects and
attributes and how to interpret the values read from attributes. Examples include a human readable
name and description strings, the list of values supported by an attribute, and measurement accu-
racy and precision. The metadata interface (see sectiond.5) returns information relevant to either a
specific object or a specific attribute of a specific object. A given attribute name may have different
metadata for different objects, even if the objects are of the same type (e.g., the voltage attribute of
two node objects may have different metadata accuracy values).

2.7 Thread Safety

Implementations of the Power API are not required to provide thread safety to multiple threads of
the same process. If necessary, users of the Power API must use locking or some other mechanism

22

Compare: Move�
artifact
This artifact was moved from page 20 of old document to page 20 of this document

Compare: Replace�
text
[Old text]: "37)."
[New text]: "40)."

Compare: Replace�
text
[Old text]: "36)."
[New text]: "39)."

Compare: Replace�
text
[Old text]: "38)."
[New text]: "41)."

Compare: Replace�
text
[Old text]: "38)."
[New text]: "41)."

Compare: Move�
artifact
This artifact was moved from page 22 of old document

Compare: Replace�
text
[Old text]: "37)."
[New text]: "40)."

Compare: Replace�
text
[Old text]: "26)."
[New text]: "29)."

to ensure that only one thread per process calls into the Power API at a time. This requirement only
applies to threads of the same process that may issue conflicting operations. Different processes
may make simultaneous Power API calls without any coordination. If thread concurrency within a
process is required, the PWR_CntxtInit function can be called multiple times to initialize multiple
Power API contexts. Multiple threads of the same process may then simultaneously call into the
Power API, so long as each thread operates on a different Power API context. For example, a
process with four threads may create four Power API contexts and associate one context with each
thread. The threads may then make Power API calls without any additional coordination, so long as
each thread operates only on its assigned context and the objects exposed by its assigned context.
Threads should not operate on objects exposed by another thread’s context without employing
locking or some other coordination mechanism.

23

Compare: Move�
artifact
This artifact was moved from page 21 of old document to page 21 of this document

Compare: Move�
artifact
This artifact was moved from page 22 of old document to page 22 of this document

Compare: Move�
artifact
This artifact was moved from page 23 of old document

Compare: Insert�
text
"24"

Chapter 3

Type Definitions

3.1 Opaque Types

The following type definitions are specified to be opaque pointers from the point of view of Power
APT users. Power API implementations will typically map these pointers to internal implementation-
specific state. The reason for using opaque pointers is to hide non-portable implementation details
from users and give implementors of the API maximum flexibility.

typedef voidx PWR_Cntxt;
typedef voidx PWR_Grp;
typedef void* PWR_0Obj;
typedef void* PWR_Status;
typedef voidx PWR_Stat;

3.2 Globally Relevant Definitions

The following definitions are specified on a global basis. The PWR_MAJOR_VERSION and PWR_-
MINOR_VERSION definitions are compile time constants that indicate the Power API version sup-
ported by the implementation. The PWR_MAX_STRING_LEN definition is a compile time constant
that defines the maximum length of strings that can be returned from Power API calls, with the
actual value being a vendor specific length.

#define PWR_MAJOR_VERSION 1
#define PWR_MINOR_VERSION 2
#define PWR_MAX_STRING_LEN VENDOR_MAX_STRING_LEN

3.3 Context Relevant Type Definitions

The PWR_CntxtType and PWR_Role types are required to be defined by all implementations of the
Power API. When a new Power API context is created, one value from each of these types is used

25

Compare: Move�
artifact
This artifact was moved from page 23 of old document to page 23 of this document

Compare: Move�
artifact
This artifact was moved from page 25 of old document

to determine the kind of context created (see sectiond.1I)). For PWR_CntxtType, the only required
value that an implementation must define is PWR_CNTXT_DEFAULT. This indicates that the new
context will only contain Power API functionality that is explicitly defined in the specification, with
no implementation-specific extentions present. Implementors may extend PWR_CntxtType with
additional values, such as PWR_CNTXT_VENDOR, to provide contexts with additional functionality.

We anticipate that most implementations of the Power API will define additional PWR_Cntxt-—
Type values that provide additional functionality, such as vendor, platform, or model specific ex-
tentions. If an implementation extends the specification, the extensions should only be visible to
the user when they use a context that was created with an implementation-specific PWR_CntxtType
value. If the implementation-specific extensions are not available to the user, initialization using
an implementation-specific PWR_CntxtType value should result in failure. The user must always
be able to initialize a context using PWR_CNTXT_DEFAULT to to get a context containing only the
standard specification features.

Differentiation between context types is the mechanism used by the Power API to enable ex-
tended vendor, platform or model specific capabilities while, at the same time, allowing portability
for applications or tools that only leverage standard specification features. For example, a tool
that leverages only the object and attribute types defined in the standard specification can initialize
a Power API context using PWR_CNTXT_DEFAULT and not have to worry about dealing with any
implementation-specific functionality. The context it receives will only provide functionality that
is explicitly defined by the Power API specification.

PWR_Role is used to specify the role that the user is acting in when they initialize a new con-
text. Additional roles may not be added by the implementor. Notice that there is a role defined
for every actor in Chapter [6] - Role/Systems Interfaces. We intend that the user’s role will serve
many purposes, such as determining the view of the system that is provided within the context
when combined with the system the user is acting on. Roles can also be used to help determine
the privilege of the user’s context for purposes such as resolving the precedence of conflicting
operations.

PWR_CntxtType

typedef int PWR_CntxtType;
#define PWR_CNTXT_DEFAULT O
#define PWR_CNTXT_VENDOR 1

26 |

Compare: Delete�
text
"24"

Compare: Move�
artifact
This artifact was moved from page 26 of old document

LiiiPWRRole,)44

typedef enum {

1 PWR_ROLE_APP = 0, /* Application */
PWR_ROLE_MC, /* Monitor and Control */
PWR_ROLE_0S, /* Operating System */
PWR_ROLE_USER, /* User x/
PWR_ROLE_RM, /* Resource Manager */
PWR_ROLE_ADMIN, /* Administrator */
PWR_ROLE_MGR, /* HPCS Manager */
PWR_ROLE_ACC, /* Accounting */
PWR_NUM_ROLES,

/* *x/

PWR_ROLE_INVALID = -1,
PWR_ROLE_NOT_SPECIFIED = -2

JIYVIVIVVvvwwwy

3.4 Object Relevant Type Definitions

The PWR_ObjType type is required to be defined by all implementations of the Power API spec-
ification. Objects with types defined by PWR_0bjType are used by the implementor to create the
system description (see section [2.4) that is exposed to the user upon initialization. An implemen-
tation may extend this type by adding new object enumeration type, which must be added prior
to PWR_NUM_OBJ_TYPES. The added implementation-specific object types will only be used by
implementation-specific contexts (see section [3.3)). Contexts that were initialized using the default
context, PWR_CNTXT_DEFAULT, will only expose objects types defined in the list below.

27

1 PWR_Roles | | | AdAAAAAdAAAAAddd

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
text
"typedefenum{"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
text
"typedefenum{"

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
graphic
The following graphic attributes were changed:
 line width

Compare: Move�
artifact
This artifact was moved from page 27 of old document

PWR _ObjType

typedef enum {
PWR_OBJ_PLATFORM = O,
PWR_OBJ_CABINET,
PWR_OBJ_CHASSIS,
PWR_OBJ_BOARD,
PWR_OBJ_NODE,
PWR_OBJ_SOCKET,
PWR_OBJ_CORE,
PWR_OBJ_POWER_PLANE,
PWR_OBJ_MEM,
PWR_0OBJ_NIC,
PWR_OBJ_HT,
PWR_NUM_OBJ_TYPES,
VALY
PWR_OBJ_INVALID = -1,
PWR_OBJ_NOT_SPECIFIED = -2
} PWR_ObjType;)

3.5 Attribute Relevant Type Definitions

The PWR_AttrName and PWR_AttrDataType types are required to be implemented. Both may

be extended by the implementor and exposed using an implementation specified context type (see

section [3.3). If new PWR_AttrName entries are added it is required that the attribute, nameliSi 4 4 4 4 44 L
specified and commented as shown in the PWR_AttrName structure. Likewise, new types must

be added to the PWR_AttrDataType structure. It’s important to note that the attribute interface

currently supports only numeric types. Attributes should only be added to this definition if they

can be meaningfully supported by the attribute interface (sectiond.4). Additional attributes must be

added prior to PWR_NUM_ATTR_NAMES. The Attributes in PWR_AttrName expose what we consider
foundational measurement and control interfaces. Additional capabilities are and can be added

using additional operations and often interface specific functions.

The PWR_AttrAccessError type is used to hold the error returns that are popped from the
PWR_Status handle (see section [3.1]) using the PWR_StatusPopError function (see page [52)

28

Compare: Move�
artifact
This artifact was moved from page 25 of old document to page 25 of this document

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
text
"PWR_OBJ_HT,"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
annotation
Matching annotation not found

Compare: Insert�
annotation
Matching annotation not found

Compare: Insert�
annotation
Matching annotation not found

Compare: Insert�
annotation
Matching annotation not found

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
artifact
This artifact was moved from page 28 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

ypedef enum {
PWR_ATTR_PSTATE = 0, /* uint64_t */
PWR_ATTR_CSTATE, /* uint64_t */
PWR_ATTR_CSTATE_LIMIT, /* uint64_t */
PWR_ATTR_SSTATE, /* uint64_t */
PWR_ATTR_CURRENT, /* double, amps */
PWR_ATTR_VOLTAGE, /* double, volts */
PWR_ATTR_POWER, /* double, watts */
PWR_ATTR_POWER_LIMIT_MIN, /* double, watts */
PWR_ATTR_POWER_LIMIT_MAX, /* double, watts */
PWR_ATTR_FREQ, /* double, Hz *x/
PWR_ATTR_FREQ_LIMIT_MIN, /* double, Hz *x/
PWR_ATTR_FREQ_LIMIT_MAX, /* double, Hz */
PWR_ATTR_ENERGY, /* double, joules */
PWR_ATTR_TEMP, /* double, degrees Celsius */
PWR_ATTR_0S_ID, /#* uint64_t */
PWR_ATTR_THROTTLED_TIME, /* uint64_t */
PWR_ATTR_THROTTLED_COUNT, ¢/puint64mtuss
PWREATTREGOVE /* uint64_t */
PWR_NUM_ATTR_NAMES,
/* x/
PWR_ATTR_INVALID = -1,
PWR_ATTR_NOT_SPECIFIED = -2

R_AttrName;
PWR AttrDataType
p
',/ typedef enum {
AAUd PWR_ATTR_DATA_DOUBLE = O,
LAl PWR_ATTR_DATA_UINT64,
PWR_NUM_ATTR_DATA_TYPES,
/% %/

PWR_ATTR_DATA_INVALID = -1,
PWR_ATTR_DATA_NOT_SPECIFIED = -2
} PWR_AttrDataType;

PWR_AttrAccessError

typedef struct {
PWR_0Obj obj; /* The object associated with the error */
PWR_AttrName attr; /* The attribute associated with the error */
int index; /* The index in the output array where the error occurred */
int error; /* The error code, see Error Return Definitions section */
} PWR_AttrAccessError;

29

Compare: Move�
artifact
This artifact was moved from page 26 of old document to page 26 of this document

Compare: Insert�
text
"PWR"

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 26 of old document to page 28 of this document

Compare: Delete�
annotation
Matching annotation not found

Compare: Delete�
annotation
Matching annotation not found

Compare: Delete�
annotation
Matching annotation not found

Compare: Delete�
annotation
Matching annotation not found

Compare: Delete�
text
"PWRAttrName"

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Move�
text
This text was moved from page 26 of old document to page 29 of this document

Compare: Move�
text
This text was moved from page 26 of old document

Compare: Move�
paragraph
This paragraph was moved from page 26 of old document to page 29 of this document

Compare: Move�
paragraph
This paragraph was moved from page 26 of old document

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Delete�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
text
"/*uint64_t*/"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
text
"PWR_ATTR_GOV,"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Delete�
text
"PWR"

Compare: Insert�
text
"AttrName"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
text
"PWR"

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Insert�
graphic
Matching graphic not found

Compare: Replace�
graphic
The following graphic attributes were changed:
 line width

Compare: Move�
artifact
This artifact was moved from page 29 of old document

3.6.. . Metadata Relevant Type Definitions

The PWR_MetaName type is required to be implemented. The type may be extended by the imple-
mentor and the additional capabilities may be exposed using an implementation specified context
type (see section[3.3). If new PWR_MetaName items are added, it is required that the metadata name
be specified and commented as shown in the PWR_MetaName definition. Additional metadata items
must be added prior to PWR_NUM_META_NAMES.

PWR _MetaName

) | typedef enum {
PWR_MD_NUM = 0, /* uint64_t */
PWR_MD_MIN, /* either uint64_t or double, depending on attribute type */
PWR_MD_MAX, /* either uint64_t or double, depending on attribute type */
PWR_MD_PRECISION, /* uint64_t */
PWR_MD_ACCURACY, /* double */
PWR_MD_UPDATE_RATE, /* double */
PWR_MD_SAMPLE_RATE, /* double */
PWR_MD_TIME_WINDOW, /* PWR_Time */
PWR_MD_TS_LATENCY, /* PWR_Time */
PWR_MD_TS_ACCURACY, /* PWR_Time */
PWR_MD_MAX_LEN, /* uint64_t, max strlen of any returned metadata string. */
PWR_MD_NAME_LEN, /* uint64_t, max strlen of PWR_MD_NAME x/
PWR_MD_NAME, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_DESC_LEN, /* uint64_t, max strlen of PWR_MD_DESC */
PWR_MD_DESC, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_VALUE_LEN, /* uint64_t, max strlen returned by PWR_MetaValueAtIndex */
PWR_MD_VENDOR_INFO_LEN, /* uint64_t, max strlen of PWR_MD_VENDOR_INFO */
PWR_MD_VENDOR_INFO, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_MEASURE_METHOD, /* uint64_t, 0/1 depending on real/model mesurement */
PWR_NUM_META_NAMES,
/* x/
PWR_MD_INVALID = -1,
PWR_MD_NOT_SPECIFIED = -2

} PWR_MetaName;

3.7 Error Return Definitions

The following required definitions are the available status returns for the functions described in this
specification. It is anticipated that this list will grow. The implementor is also free to add status
returns to express conditions not currently covered in the specification and expose them using an
implementation specified context type (see section [3.3). The range -127 through 128 are reserved
for use by the Power API specification. Positive numbers greater than zero are to be used for
warnings.

30

Compare: Move�
artifact
This artifact was moved from page 27 of old document to page 27 of this document

Compare: Move�
artifact
This artifact was moved from page 28 of old document to page 28 of this document

Compare: Move�
text
This text was moved from page 27 of old document to page 30 of this document

Compare: Move�
text
This text was moved from page 27 of old document

Compare: Move�
paragraph
This paragraph was moved from page 27 of old document to page 30 of this document

Compare: Move�
paragraph
This paragraph was moved from page 27 of old document

Compare: Delete�
text
"PWR"

Compare: Insert�
text
"PWR"

Compare: Move�
artifact
This artifact was moved from page 30 of old document

#define PWR_RET_WARN_TRUNC 5

#define PWR_RET_WARN_NO_GRP_BY_NAME 4
#define PWR_RET_WARN_NO_OBJ_BY_NAME 3
#define PWR_RET_WARN_NO_CHILDREN 2
#define PWR_RET_WARN_NO_PARENT 1
#define PWR_RET_SUCCESS 0

#define PWR_RET_FAILURE -1

#define PWR_RET_NOT_IMPLEMENTED -2
#define PWR_RET_EMPTY -3

#define PWR_RET_INVALID -4

#define PWR_RET_LENGTH -5

#define PWR_RET_NO_ATTRIB -6

#define PWR_RET_NO_META -7

#define PWR_RET_READ_ONLY -8

#define PWR_RET_BAD_VALUE -9

#define PWR_RET_BAD_INDEX -10

#define PWR_RET_OP_NOT_ATTEMPTED -11
#define PWR_RET_NO_PERM -12

#define PWR_RET_OUT_OF_RANGE -13
#define PWR_RET_NO_OBJ_AT_INDEX -14

3.8 Time Related Definitions

PWR_Time is defined as a 64-bit value used to hold timestamps in nanoseconds for a wide range of
functionality. For those timestamps that are to be used in relation to an epoch, midnight January
Ist, 1970 will be considered the beginning of the epoch. This will provide for hundreds of years to
be expressed from the epoch point, which is sufficient for the purposes of the Power API. PWR_-
Time is also used for other structures designed to record time values (PWR_TimePeriod, page [32)
for example). PWR_TIME_UNINIT is used as an indicator that the time value has not been initialized.
This is intended to allow the implementation to make decisions on how a function is being used
based on whether a time value has been specified or not (for example, the Statistics functions in
section @]) PWR_TIME_UNKNOWN is an output, which indicates that the time of an event was not
recorded. For example, a maximum value for an attribute could be known for a given time period,
but the instant at which the maximum occurred is unknown. The PWR_TimePeriod type allows
for three timestamps, start, stop and instant. Instant is available to indicate when a statistically
significant event occurred within the window delineated by start and stop. For example, if the
user requests the PWR_ATTR_STAT_MAX statistic for PWR_ATTR_POWER, the start and stop times will
indicate the window of time over which the maximum value was calculated. The instant would
indicate the instant in time the maximum value occurred. Defining PWR_Time, PWR_TIME_UNINIT,
PWR_TIME_UNKNOWN, and PWR_TimePeriod as specified is required.

typedef uint64_t PWR_Time;
#define PWR_TIME_UNINIT O
#define PWR_TIME_UNKNOWN O

31

Compare: Move�
artifact
This artifact was moved from page 29 of old document to page 29 of this document

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Move�
artifact
This artifact was moved from page 31 of old document

PWR _TimePeriod

typedef struct {
PWR_Time start;
PWR_Time stop;
PWR_Time instant;
} PWR_TimePeriod;

3.9 Statistics Relevant Type Definitions

The PWR_AttrStat type includes the list of currently defined statistics potentially available to
the user of an implementation. Potentially, because this feature requires either direct device or
software support. Statistics are generated on a per-attribute basis (see PWR_AttrName on page
[29)) The statistics type definitions are required to be implemented and are used with the statistics
functions (see section [4.0)).

PWR_AttrStat

typedef enum {
PWR_ATTR_STAT_MIN = O,
PWR_ATTR_STAT_MAX,
PWR_ATTR_STAT_AVG,
PWR_ATTR_STAT_STDEV,
PWR_ATTR_STAT_CV,
PWR_ATTR_STAT_SUM,
PWR_NUM_ATTR_STATS,
/% */
PWR_ATTR_STAT_INVALID = -1,
PWR_ATTR_STAT_NOT_SPECIFIED = -2
} PWR_AttrStat;

PWR_ID

typedef enum {
PWR_ID_USER = O,
PWR_ID_JOB,
PWR_ID_RUN,
PWR_NUM_IDS,
VALY
PWR_ID_INVALID = -1,
PWR_ID_NQOT_SPECIFIED = -2
} PWR_ID;

32

Compare: Move�
artifact
This artifact was moved from page 30 of old document to page 30 of this document

Compare: Replace�
text
[Old text]: "26)."
[New text]: "29)."

Compare: Move�
artifact
This artifact was moved from page 32 of old document

3.10 OS Hardware Interface Type Definitions

The following definitions are used in the Operating system to Hardware interface described in sec-
tion Each definition will be described below along with its specification. All of the definitions
in this section are required, even if the corresponding OS/HW functions are not implemented.

PWR _OperState

The PWR_OperState type is used to describe the state being requested by OS to Hardware in-
terface functions that require power/performance state information such as P-State and C-State
information. Both c_state_num and p_state_num must be provided.

typedef struct {
uint64_t c_state_num;
uint64_t p_state_num;
} PWR_OperState;

3.11 Application OS Interface Type Definitions

The following definitions are primarily used in the Application to Operating system interface de-
scribed in section [6.3] Each definition will be described below along with its specification. All
of the definitions in this section are required, even if the corresponding App/OS functions are not
implemented.

PWR RegionHint

The PWR_RegionHint type is an abstraction intended to allow the application to communicate
power and performance significant information to the operating system. It is used in conjunction
with PWR_RegionIntensity to describe the type and extent of the behavior described for a given
execution region. This information can then be used to tune components, with the intent being a
more power/performance efficient use of the components results. For example, if an application is
going into a serial region, the performance of the application may benefit from the core running the
serial portion of the code at a higher frequency, thereby completing that serial portion faster. Since
the application is in a serial portion, the implementation may determine that the remaining cores
may be put into a more power efficient state (a sleep state for example), thus possibly resulting in
both a performance increase and a decrease in the amount of power/energy the application uses.
Regions may be specified as PWR_REGION_DEFAULT to indicate that the application is no longer
providing a hint as to the region characteristics of currently executing code.

33

Compare: Move�
artifact
This artifact was moved from page 31 of old document to page 31 of this document

Compare: Move�
artifact
This artifact was moved from page 33 of old document

typedef enum {
PWR_REGION_DEFAULT = O,
PWR_REGION_SERIAL,
PWR_REGION_PARALLEL,
PWR_REGION_COMPUTE,
PWR_REGION_COMMUNICATE,
PWR_REGION_IO,
PWR_REGION_MEM_BOUND,
PWR_NUM_REGION_HINTS,
/x */
PWR_REGION_INVALID = -1,
PWR_REGION_NOT_SPECIFIED = -2

} PWR_RegionHint;

PWR _Regionlntensity

The PWR_RegionIntensity type is an abstraction of a given level of intensity for a PWR_Region-
Hint. It provides five levels of intensity as well as PWR_Region_INT_NONE, which can be used in
the case where the intensity is not known, is not applicable, or in cases where the operating system
or runtime may be better equipped to determine the intensity of a given code region.

typedef enum {
PWR_REGION_INT_HIGHEST = O,
PWR_REGION_INT_HIGH,
PWR_REGION_INT_MEDIUM,
PWR_REGION_INT_LOW,
PWR_REGION_INT_LOWEST,
PWR_REGION_INT_NONE,
PWR_NUM_REGION_INTENSITIES,
/* %/
PWR_REGION_INT_INVALID = -1,
PWR_REGION_INT_NOT_SPECIFIED = -2

} PWR_RegionIntensity;

PWR SleepState

The PWR_SleepState type is a high level abstraction of the different sleep state levels that may
be provided on a given system. The sleep levels are translated into the appropriate hardware level
constructs by lower layers of the PowerAPI.

34

Compare: Move�
artifact
This artifact was moved from page 32 of old document to page 32 of this document

Compare: Move�
artifact
This artifact was moved from page 34 of old document

typedef enum {
PWR_SLEEP_NO = 0,
PWR_SLEEP_SHALLOW,
PWR_SLEEP_MEDIUM,
PWR_SLEEP_DEEP,
PWR_SLEEP_DEEPEST,
PWR_NUM_SLEEP_STATES,
/% %/
PWR_SLEEP_INVALID = -1,
PWR_SLEEP_NOT_SPECIFIED = -2

} PWR_SleepState;

PWR PerfState

The PWR_PerfState type is an abstraction meant to describe the different possible performance
states in which hardware may be placed.

typedef enum {
PWR_PERF_FASTEST = 0,
PWR_PERF_FAST,
PWR_PERF_MEDIUM,
PWR_PERF_SLOW,
PWR_PERF_SLOWEST,
PWR_NUM_PERF_STATES,
/x */
PWR_PERF_INVALID = -1,
PWR_PERF_NOT_SPECIFIED = -2

} PWR_PerfState;

35

Compare: Move�
artifact
This artifact was moved from page 33 of old document to page 33 of this document

Compare: Move�
artifact
This artifact was moved from page 35 of old document

Compare: Insert�
text
"36"

Chapter 4

Core (Common) Interface Functions

Core, or so called Common, interface functions are functions that can be used, at least in par,
by most of the interfaces described in the Power API specification. Core functions include the
following areas:

o Initialization, required to use any of the functionality described in this specification,

e Navigation functions allow the user to traverse the system description and discover infor-
mation about the underlying platform,

e Group functions, primarily a convenience abstraction,

e Attribute functions expose measurement and control functionality,

e Metadata functions allow the user to access additional information about objects and at-
tributes (often device or instrumentation specific information),

e Statistics functions are used to generate statistical information based on fundamental at-
tribute information (measurements),

and other functionality that is common across a number of interfaces.

4.1 Initialization

Initialization using PWR_CntxtInit is required to use any of the functionality documented in this
specification. The user supplies the type of the context requested and their role. Currently, the
specification’s only required context type is PWR_CNTXT_DEFAULT. The context type is intended
to be one way in which the implementor can distinguish their implementation from the standard
specification and other implementations (see section [3.3)). The user must also supply their role
(see page |27 for the PWR_Role definition). One purpose of specifying the role is to convey what
type of user they intend to be, and therefore, how they would like to interact with or how the
underlying implementation manages the privileges granted to the user/role combination. A system
administrator (PWR_ROLE_ADMIN) will desire and require different capabilities, privileges and level
of abstraction than the application user (PWR_ROLE_APP), for example.

The user also has the opportunity to specify a name that will be associated with the context.
This feature is anticipated to be useful in supporting advanced functionality. Initialization returns
a context to the user. The context contains the user’s view of the system, dependent on what type

37

Compare: Move�
artifact
This artifact was moved from page 34 of old document to page 34 of this document

Compare: Replace�
text
[Old text]: "25"
[New text]: "27"

Compare: Move�
artifact
This artifact was moved from page 37 of old document

of context was requested, the user’s role and implementation specifics. The system description
that the user is exposed to must conform to the rules outlined in the specification (see sections
and [2.4). The context should be destroyed (cleaned up) by using the PWR_CntxtDestroy function
when no longer needed.

Function Prototype PWR_CntxtInit()

The PWR_CntxtInit function is required to be called before using any other Power API function.
The context returned is passed to other Power API functions either explicitly as an argument or
implicitly through an argument associated with the context.

int PWR_CntxtInit(PWR_CntxtType type,
PWR_Role role,
const char* name,
PWR_Cntxt* context);

Argument(s) Input Description
and/or
Output
PWR_CntxtType type Input The requested context type (see page [26)):
PWR_Role role Input The role of the user (see page 27)):
const char* name Input User specified string name to be associated
with the context.
PWR_Cntxt* context Output The users context.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, context is set to a valid user context.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_CntxtDestroy()

The PWR_CntxtDestroy function is used to destroy (clean up) the context obtained with PWR_-
CntxtInit. The implementation is required to clean up, unlink, destroy (as appropriate) all con-
text resources as a result of this call.

int PWR_CntxtDestroy(PWR_Cntxt context);

38

Compare: Move�
artifact
This artifact was moved from page 35 of old document to page 35 of this document

Compare: Replace�
text
[Old text]: "24)."
[New text]: "26)."

Compare: Replace�
text
[Old text]: "25)."
[New text]: "27)."

Compare: Move�
artifact
This artifact was moved from page 38 of old document

Argument(s) Input Description
and/or
Output
PWR_Cntxt context Input The context obtained using PWR_CntxtInit
the user wishes to destroy.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

4.2 Hierarchy Navigation Functions

Hierarchy navigation (also called discovery) is accomplished using attributes (EntryPoint, Type,
Parent and Children) that are implicit to every object in the system description whether defined in
the specification or added by the implementor. Navigation is accomplished using these attributes,
through the associated function calls, within the context made available to the user upon initializa-
tion. After initialization the first call will generally be PWR_CntxtGetEntryPoint to determine
the user’s entry point in the system hierarchy provided within the user’s context. Depending on the
user, the interface and the role, the context could contain a view of the entire system description or
a subset of the system description. Navigating through the hierarchy is accomplished with PWR_-
ObjGetParent to navigate up and PWR_0bjGetChildren to navigate down. To understand what
kind of object was returned with either of these calls the user can utilize PWR_0bjGetType call.
The name of the object can be discovered using the PWR_0bjGetName function and if the user has
a name, the associated object can be discovered using the PWR_CntxtGetObjByName function.

The Power API does not provide an explicit “Free Object” interface. Specifically, objects re-
turned by Power API interfaces do not need to be later freed or released explicitly. This design
choice was made in order to keep usage of the Power API as simple as possible, with the poten-
tial cost of an increased burden on the Power API implementor to limit implementation-internal
memory usage.

Function Prototype for PWR_CntxtGetEntryPoint()

The PWR_CntxtGetEntryPoint call is typically used immediately following initialization. When-
ever PWR_CntxtGetEntryPoint is called the implementation defined entry point (location) in the
system description is returned. PWR_CntxtGetEntryPoint can always be called to reposition or
reorient the user to the initial entry location.

int PWR_CntxtGetEntryPoint(PWR_Cntxt context, PWR_Obj* entry_point);

39,

Compare: Delete�
text
"36"

Compare: Move�
artifact
This artifact was moved from page 39 of old document

Argument(s) Input Description

and/or
Output

PWR_Cntxt context Input The user’s context.

PWR_Obj* entry_point Output The user’s entry point into the system de-
scription (the same for the life of the con-
text).

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, entry_point set to system description en-

try point (object).

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _ObjGetType()

The PWR_0bjGetType function returns the type of the object specified. See page[28|for valid object
types.

int PWR_0bjGetType(PWR_Obj object, PWRmObjType® type) ;

Argument(s) Input Description
and/or
Output

PWR_0Obj object Input The object that the user wishes to determine

the type of.

PWR (ObjType* type Output The type of the specified object.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, type is set to the type of the specified ob-
ject.

PWR_RET_FAILURE Upon FAILURE, type is set to PWR_OBJ_INVALID.

Function Prototype for PWR_ObjGetName()

The PWR_ObjGetName function copies the name of the specified object into the user provided
buffer. See page @2)to get the object based on the unique name using PWR_CntxtGetObjByName.

int PWR_0bjGetName(PWR_0bj object, char* dest, size_t len);

40

Compare: Move�
artifact
This artifact was moved from page 37 of old document to page 37 of this document

Compare: Replace�
text
[Old text]: "25"
[New text]: "28"

Compare: Replace�
text
[Old text]: "PWR_ObjType"
[New text]: "PWR_ObjType*"

Compare: Replace�
text
[Old text]: "ObjType"
[New text]: "ObjType*"

Compare: Replace�
text
[Old text]: "39"
[New text]: "42"

Compare: Move�
artifact
This artifact was moved from page 40 of old document

Argument(s) Input Description
and/or
Output
PWR_0Obj object Input The object that the user wishes to determine
the name of.
char* dest Input The address of the user provided buffer.
size_t len Input The length of the user provided buffer.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, the buffer will contain the name of the
object, the string will include a terminating null byte.
PWR_RET_WARN_TRUNC Call succeeded, but the length of object name was longer
than the provided buffer and the name was truncated.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjGetParent()

The PWR_0ObjGetParent function is used to find the object immediately above the specified object
in the system description available to the user through the current context. Note, currently, there
are some cases where an object has no parent, namely the platform object.

int PWR_ObjGetParent(PWR_Obj object, PWR_Obj* parent);
Argument(s) Input Description
and/or
Output
PWR_0Obj object Input The object that the user wishes to determine
the parent of.
PWR_0Obj* parent Output The parent object of the specified input ob-
ject.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, parent set to parent of specified object.
PWR_RET_WARN_NO_PARENT | Call succeeded but specified object does not have a parent.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjGetChildren()

The PWR_ObjGetChildren function returns the child or children of the specified object. The
caller is expected to check the return code of PWR_0ObjGetChildren to determine if the object has

41

Compare: Move�
artifact
This artifact was moved from page 38 of old document to page 38 of this document

Compare: Move�
artifact
This artifact was moved from page 41 of old document

children or not. If the specified object has one or more children, indicated by a return code of
PWR_RET_SUCCESS, a new group (PWR_Grp) is returned that contains the object’s children. The
user is responsible for destroying this group when it is no longer needed (see PWR_GrpDestroy on
page [@4)y If the specified object has no children, indicated by a return code of PWR_RET_WARN_-
NO_CHILDREN, no group is returned and the input (PWR_Grp) is not modified.

int PWR_0bjGetChildren(PWR_0bj object, PWR_Grp* group);

Argument(s) Input Description
and/or
Output
PWR_Obj object Input The object that the user wishes to determine
the children of.
PWR_Grp* group Output On input, this should be set to point to an

uninitialized PWR_Grp (i.e., the caller should
not call PWR_GrpCreate ahead of time). If
PWR_RET_SUCCESS is returned, *group will
be set to a newly created group containing
the object’s children. If PWR_RET_WARN_-
NO_CHILDREN is returned, the input PWR_Grp
is not modified.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, group is set to a newly created
group containing the child or children of specified ob-
ject.

PWR_RET_WARN_NO_CHILDREN Call succeeded but specified object does not have any
children. The input PWR_Grp is not modified.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_CntxtGetObjByName()

The PWR_CntxtGetObjByName function returns the object given the context and unique object
name. See page [#0|to get the name of a specified object using PWR_ObjGetName.

int PWR_CntxtGetObjByName(PWR_Cntxt context,
const char* name,
PWR_0bj* object);

42

Compare: Move�
artifact
This artifact was moved from page 39 of old document to page 39 of this document

Compare: Replace�
text
[Old text]: "41)."
[New text]: "44)."

Compare: Replace�
text
[Old text]: "37"
[New text]: "40"

Compare: Move�
artifact
This artifact was moved from page 42 of old document

Argument(s) Input Description
and/or
Output
PWR_Cntxt context Input The context containing the object that the
user wishes to retrieve given its unique name.
Note, the object may be present in the system
but not available to the user through the cur-
rent context.
const char * name Input The unique name of the object that the user
wishes to retrieve.
PWR_Obj* object Output The object that corresponds to the name
specified by the user.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, object is set to object corresponding

to name specified by user.
PWR_RET_WARN_NO_OBJ_BY_NAME | If no object exists corresponding to name provided.
PWR_RET_FAILURE Upon FAILURE.

4.3 Group Functions

Group functions are provided as a convenience in situations, for example, where an operation, or
operations are required to be executed on multiple objects. Rather than executing the same oper-
ation multiple times, once for each object, some operations provide a group variant to streamline
this type of functionality. Groups can be dynamically created (PWR_GrpCreate) when needed and
can exist for short periods of time and destroyed with PWR_GrpDestroy, or exist for the duration
of the users context. Groups may not contain multiple instances of the same object, i.e. duplicate
objects are not allowed. For group functions with inputs such that output group would contain no
objects, the PWR_Grp passed in will be unmodified.

Function Prototype for PWR_GrpCreate()

The PWR_GrpCreate function is used to create a new group which will be associated with and
unique to the users context.

int PWR_GrpCreate(PWR_Cntxt context, PWR_Grp* group);

43

Compare: Move�
artifact
This artifact was moved from page 40 of old document to page 40 of this document

Compare: Move�
artifact
This artifact was moved from page 43 of old document

Argument(s) Input Description
and/or
Output
PWR_Cntxt context Input The user’s context that the group, when cre-
ated, will be associated with.
PWR_Grp* group Output The new (empty) group.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group is set to new (empty) group.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpDestroy()

The PWR_GrpDestroy function is used to destroy (clean up) a group created by a user.

int PWR_GrpDestroy(PWR_Grp group);
Argument(s) Input Description
and/or
Output
PWR_Grp group Input The group that the user is acting on.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR_GrpAddObj()

The PWR_GrpAddObj function is used to add a specified object to a specified group. In the event
that the object is already a member of the group, PWR_RET_FAILURE will be returned since groups
are not allowed to contain multiple objects.

int PWR_GrpAddObj(PWR_Grp group,
PWR_Obj object);

Argument(s) Input Description

and/or

Output
PWR_Grp group Input/Output | The group that the user is acting on.
PWR_Obj object Input The object to be added to the specified group.

44

Compare: Move�
artifact
This artifact was moved from page 41 of old document to page 41 of this document

Compare: Move�
artifact
This artifact was moved from page 44 of old document

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpRemoveObj()

The PWR_GrpRemove0bj function is used to remove a specified object from a specified group.

int PWR_GrpRemoveObj(PWR_Grp group,
PWR_Obj object);

Argument(s) Input Description

and/or

Output
PWR_Grp group Input/Output | The group that the user is acting on.
PWR_Obj object Input The object to be removed from the specified

group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpGetNumObjs()

The PWR_GrpGetNumObjs function is used to get the number of objects contained in the specified
group.

int PWR_GrpGetNumObjs(PWR_Grp group);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.

Return Code(s) Description

int Upon SUCCESS, the number of objects contained in the
specified group.

PWR_RET_FAILURE Upon FAILURE.

45

Compare: Move�
artifact
This artifact was moved from page 42 of old document to page 42 of this document

Compare: Move�
artifact
This artifact was moved from page 45 of old document

Function Prototype for PWR_GrpGetObjByIndx()

The PWR_GrpGetObjByIndx is used to get the object from the specified group at the specified
index.

int PWR_GrpGetObjByIndx(PWR_Grp group,
int index,
PWR_Obj* object);
Argument(s) Input Description
and/or
Output
PWR_Grp group Input The group that the user is acting on.
int index Input The index within the specified group of the
desired object.
PWR_0Obj* object Output The object at the specified index in the spec-
ified group.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, object is set to object at spec-
ified index.
PWR_RET_WARN_NO_OBJ_AT_INDEX No object at specified index in specified group.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpDuplicate()

The PWR_GrpDuplicate function is used to duplicate an existing group. The duplicate group is a
new separate group from the original group specified. Actions on the duplicate group do not affect
the original group and visa versa. In the event that the output PWR_Grp contains no objects see[d.3|
for the definition of the output, PWR_Grp.

int PWR_GrpDuplicate(PWR_Grp groupl, PWR_Grp* group2);

Argument(s) Input Description
and/or
Output
PWR_Grp groupl Input The original group (groupl).
PWR_Grp* group2 Output Duplicate (group2) of the original group
(groupl) specified by user.

46

Compare: Move�
artifact
This artifact was moved from page 43 of old document to page 43 of this document

Compare: Move�
artifact
This artifact was moved from page 46 of old document

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, duplicate is a duplicate group of original
group.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpUnion()

The PWR_GrpUnion function is used to create a group that is the union (U) of two specified groups.
The union group created is a new separate group from the original groups specified. Actions on the
union group do not affect the original groups and visa versa. In the event that the output PWR_Grp
contains no objects see 4.3| for the definition of the output, PWR_Grp.

int PWR_GrpUnion(PWR_Grp groupl,
PWR_Grp group2,
PWR_Grp* group3);

Argument(s) Input Description
and/or
Output
PWR_Grp groupl Input The first of the two groups used in the union,
(U) operation.
PWR_Grp group2 Input The second of the two groups used in the
union, (U) operation.
PWR_Grp* group3 Output The output group (group3) is the union, (U)
operation, of the first (groupl) and second
(group2) groups specified.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group3 is set to union of specified groups.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _Grplntersection()

The PWR_GrpIntersection function is used to create a group that is the Intersection (M) of two
specified groups. The intersection group is a new separate group from the original groups specified.
Actions on the intersection group do not affect the original groups and visa versa. In the event that
the output PWR _Grp contains no objects see 4.3| for the definition of the output, PWR_Grp.

int PWR_GrpIntersection(PWR_Grp groupl,
PWR_Grp group2,
PWR_Grp* group3);

47

Compare: Move�
artifact
This artifact was moved from page 44 of old document to page 44 of this document

Compare: Move�
artifact
This artifact was moved from page 47 of old document

Argument(s) Input Description

and/or
Output

PWR_Grp groupl Input The first of the two groups used in the Inter-
section (M) operation.

PWR_Grp group2 Input The second of the two groups used in the in-
tersection (M) operation.

PWR_Grp* group3 Output The output group (group3) is the intersec-
tion, (M) operation, of the first (groupl) and
second (group2) groups specified.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, group3 is set to intersection of specified

groups.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpDifference()

The PWR_GrpDifference function is used to create a group that is the Difference (\) of two
specified groups. The difference group is a new separate group from the original groups specified.
Actions on the difference group do not affect the original groups and visa versa. In the event that
the output PWR_Grp contains no objects see 4.3| for the definition of the output, PWR_Grp.

int PWR_GrpDifference(PWR_Grp groupl,
PWR_Grp group2,
PWR_Grp* group3) ;

Argument(s) Input Description
and/or
Output
PWR_Grp groupl Input The first of the two groups used in the differ-
ence () operation.
PWR_Grp group2 Input The second of the two groups used in the dif-
ference () operation.
PWR_Grp* group3 Output The output group (group3) is the difference,
(\) operation, of the first (groupl) and sec-
ond (group2) groups specified.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS, group3 is set to difference of specified
groups.

PWR_RET_FAILURE Upon FAILURE.

48

Compare: Move�
artifact
This artifact was moved from page 45 of old document to page 45 of this document

Compare: Move�
artifact
This artifact was moved from page 48 of old document

Function Prototype for PWR_CntxtGetGrpByName()

The PWR_CntxtGetGrpByName function returns the group given the context and unique group
name. This function is included to allow the user to make use of groups that are provided with
the initial context by the implementation. The list of valid group names should be provided by the
vendor in their documentation. Due to the defined group names being vendor specific, use of this
function should be considered non-portable.

int PWR_CntxtGetGrpByName(PWR_Cntxt context,
const char* name,
PWR_Grp* group);

Argument(s) Input Description
and/or
Output
PWR_Cntxt context Input The context containing the group that the
user wishes to retrieve given its unique name.
const char* name Input The unique name of the group that the user
wishes to retrieve.
PWR_grp* group Output The implementation provided group corre-
sponding to the specified name.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, group corresponding to the speci-
fied name.

PWR_RET_WARN_NO_GRP_BY_NAME | If no implementation supplied group exists corre-
sponding to name provided.
PWR_RET_FAILURE Upon FAILURE.

4.4 Attribute Functions

The Attribute functions make up the foundation of the Power API specification, providing measure-
ment (get) and control (set) interfaces for a wide range of power and energy related functionality.
Get and set interfaces are provided for single attribute/single object, multiple attribute/single ob-
ject, single attribute/multiple objects (group) and multiple attributes/multiple objects (group). In
each case the user specifies the attribute or attributes to get or set. The valid attribute names are
defined in the PWR_AttrName structure (see page 29)) A complete list of all the valid attributes
and their meanings can be found in table section The timestamp is a critical part of the
get (measurement) interface for power and energy related information. It is very important that
the timestamp returned (PWR_Time) be an accurate representation of when the value returned was

49

Compare: Move�
artifact
This artifact was moved from page 46 of old document to page 46 of this document

Compare: Replace�
text
[Old text]: "26)."
[New text]: "29)."

Compare: Move�
artifact
This artifact was moved from page 49 of old document

measured to the best possible temporal accuracy, not when the function was called. It is required
by the specification that the value returned is the value that was measured as close as possible to
when the get function was called. The quality of the measurement and timestamp are device and
implementation dependent. Information about each attribute can be obtained through the metadata
interface, described in section[4.3]

Function Prototype for PWR_ObjAttrGetValue()

The PWR_0ObjAttrGetValue function is provided to get the value of a single specified attribute
(PWR_AttrName attr) from a single specified object (PWR_Obj object). The timestamp re-
turned (PWR_Time *ts) should accurately represent when the value was measured.

int PWR_ObjAttrGetValue(PWR_Obj object,
PWR_AttrName attr,
void* value,
PWR_Time* ts);

Argument(s) Input Description

and/or
Output

PWR_0Obj object Input The target object.

PWR_AttrName attr Input The target attribute. See section [3.5]for a list
of available attributes.

void* value Output Pointer to caller-allocated storage, of 8
bytes, to hold the value read from the at-
tribute.

PWR_Time* ts Output Pointer to caller-allocated storage to hold the
timestamp of when the value was read from
the attribute. Pass in NULL if the timestamp
is not needed.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS.

PWR_RET_NOT_IMPLEMENTED | The requested attribute is not supported for the target object.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjAttrSetValue()

The PWR_0ObjAttrSetValue function is provided to set the value of a single specified attribute
(PWR_AttrName attr) of a single specified object (PWR_0Obj object).

50

Compare: Move�
artifact
This artifact was moved from page 47 of old document to page 47 of this document

Compare: Move�
artifact
This artifact was moved from page 50 of old document

int PWR_ObjAttrSetValue(PWR_Obj object,
PWR_AttrName attr,
const void* value);

Argument(s) Input Description
and/or
Output
PWR_Obj object Input The target object.
PWR_AttrName attr Input The target attribute. See section for a list
of available attributes.
const void* value Input Pointer to the 8 byte value to write to the at-
tribute.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.

PWR_RET_NOT_IMPLEMENTED

The requested attribute is not supported for the target object.

PWR_RET_BAD_VALUE

The value was not appropriate for the target attribute.

PWR_RET_OUT_OF_RANGE

The value was out of range for the target attribute.

PWR_RET_FAILURE

Upon FAILURE.

Function Prototype for PWR _StatusCreate()

The PWR_StatusCreate function is provided to create the PWR_Status structure that will be
used in functions that perform multiple operations and potentially return individual statuses for
each operation. It is up to the implementation to create the appropriate amount of storage for
the PWR_Status structure based on the implementation and the number of statuses that will be
held. For example see PWR_ObjAttrGetValues on page [53)) Note, PWR_Status is an opaque
handle, its backing definition is determined by the implementor (see [3.1)). It is intended that the
implementation only allocate space for failed operations. Errors are read from the PWR_Status by
popping them off the structure which requires the structure to only be as large as the number of
error returns require. Note, since the status structure is not associated with a context the user is

responsible to free this memory before destroying the context.

int PWR_StatusCreate(PWR_Status* status);

Argument(s) Input Description
and/or
Output
PWR_Status* status Output The new status structure.

51

Compare: Move�
artifact
This artifact was moved from page 48 of old document to page 48 of this document

Compare: Replace�
text
[Old text]: "50."
[New text]: "53."

Compare: Move�
artifact
This artifact was moved from page 51 of old document

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _StatusDestroy/()

The PWR_StatusDestroy function is provided to destroy the PWR_Status structure created using
PWR_StatusCreate (see page [§IP Note, PWR_Status is an opaque handle, its backing definition
is determined by the implementor (see [3.1)).

int PWR_StatusDestroy(PWR_Status status);
Argument(s) Input Description
and/or
Output
PWR_Status status Input The PWR_Status structure the user wishes to
destroy.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _StatusPopError()

The PWR_StatusPopError function is provided to iterate through the PWR_Status structure cre-
ated using PWR_StatusCreate (see page 1)) and populated using any of the function calls that
leverage this structure. Using this method allows the PWR_Status structure to only grow as large as
necessary storing only error returns. Note, PWR_Status is an opaque handle, its backing definition
is determined by the implementor (see [3.1)).

The PWR_AttrAccessError structure that is returned will always have its obj, attr, and
error fields set to the object, attribute, and error code associated with the error. The PWR_-
AttrAccessError structure’s index field will only be set for attribute get functions (e.g., PWR_-
ObjAttrGetValues), and indicates the index in the output value array where the error occurred.
For attribute get functions, errors are returned by PWR_StatusPopError in ascending order by
index.

int PWR_StatusPopError(PWR_Status status,
PWR_AttrAccessError* error);

52

Compare: Move�
artifact
This artifact was moved from page 49 of old document to page 49 of this document

Compare: Replace�
text
[Old text]: "48."
[New text]: "51."

Compare: Replace�
text
[Old text]: "48)"
[New text]: "51)"

Compare: Move�
artifact
This artifact was moved from page 52 of old document

Argument(s) Input Description
and/or
Output
PWR_Status status Input The PWR_Status structure the user wishes to
examine (iterate over).
PWR_AttrAccessErrorx Output Pointer to a PWR_AttrAccessError struc-
error ture (see page [29) to hold the status that is
popped from the PWR_Status structure.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_EMPTY Returned when all errors have been popped.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR StatusClear()

The PWR_StatusClear function is provided to clear a previously used PWR_Status structure cre-
ated using PWR_StatusCreate, (see page [§1)) basically allowing reuse of the same structure if
multiple calls are executed and examined in sequence. Note, PWR_Status is an opaque handle, its
backing definition is determined by the implementor (see [3.1)).

int PWR_StatusClear(PWR_Status status)

Argument(s) Input Description
and/or
Output
PWR_Status status Input The PWR_Status structure the user wishes to
clear (reuse).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_ObjAttrGetValues()

The PWR_0ObjAttrGetValues function is provided to get the value of multiple specified attributes
listed in the PWR_AttrName attrs[] array from a single specified object — get multiple attribute
values from a single object. The timestamps returned in the PWR_Time ts[] array should accu-
rately represent, and correspond sequentially, with the time each value returned was measured. If

33

Compare: Move�
artifact
This artifact was moved from page 50 of old document to page 50 of this document

Compare: Replace�
text
[Old text]: "27)"
[New text]: "29)"

Compare: Replace�
text
[Old text]: "48)"
[New text]: "51)"

Compare: Move�
artifact
This artifact was moved from page 53 of old document

the function fails for one or more attributes, the PWR_Status status structure returned can be
examined for additional information regarding the failure using PWR_StatusPopError (see page

52).

int PWR_ObjAttrGetValues(PWR_Obj object,
int count,
const PWR_AttrName attrs[],
voidx values,
PWR_Time ts[],
PWR_Status* status);

Argument(s) Input Description

and/or

Output
PWR_0Obj object Input The target object.
int count Input The number of elements in the attrs[],

*xvalues, and ts[] arrays.

const PWR_AttrName Input The array of target attributes to read. See
attrs(] section [3.5]for a list of available attributes.
void* values Output The array of values read, one value for each

target attribute. This should point to caller-
allocated storage of at least (count * 8)
bytes. Upon success, the value read for at-
tribute attrs[i] will be located at address
(values+(ix8)).

PWR_Time ts[] Output The array of timestamps, one times-
tamp for each value read. This should
point to caller-allocated storage of at least
(count*sizeof (PWR_Time)). Upon suc-
cess, the timestamp of the value read for
attrs[i] will be located at ts[i]. Pass in
NULL if timestamps are not needed.
PWR_Status* status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not

needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

54

Compare: Move�
artifact
This artifact was moved from page 51 of old document to page 51 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 54 of old document

Function Prototype for PWR_ObjAttrSetValues()

The PWR_0bjAttrSetValues function is provided to set the value of multiple specified attributes
in the (PWR_AttrName attrs[]) array of a specified object — set multiple attribute values
of a single object. If the function fails for one or more attributes, the PWR_Status status
structure returned can be examined for additional information regarding the failure using PWR_-

StatusPopError (see page([S2)):

int PWR_ObjAttrSetValues(PWR_Obj object,

int count,

const PWR_AttrName attrs[],
const void* values,
PWR_Status* status);

Argument(s) Input Description
and/or
Output
PWR_Obj object Input The target object.
int count Input The number of elements in the attrs[] and
*values arrays.
const PWR_AttrName Input The array of target attributes to write. See
attrs[] section [3.5] for a list of available attributes.
const void* values Input The array of values to write, one value for
each target attribute. The value to write
to attribute attrs[i] is located at address
(values+(ix*8)).
PWR_Status* status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-
ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR_ObjAttrIsValid()

The PWR_ObjAttrIsValid function is used to determine if a specified attribute (PWR_AttrName

attr) is valid for the specified object.

55

Compare: Move�
artifact
This artifact was moved from page 52 of old document to page 52 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 55 of old document

int PWR_ObjAttrIsValid(PWR_Obj object,
PWR_AttrName attr);

Argument(s) Input Description
and/or
Output
PWR_Obj object Input The object that the user is acting on.
PWR_AttrName attr Input The attribute the user wishes to confirm is
valid for the specified object. See the PWR_-
AttrName type definition in section[3.5|

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR_GrpAttrGetValue()

The PWR_GrpAttrGetValue function is provided to get the value of a single specified attribute
(PWR_AttrName attr) from all the objects in a specified group (PWR_Grp group) — get a single
attribute value from multiple objects. The timestamps returned in the PWR_Time ts[] array
should accurately represent, and correspond sequentially, with the time each value returned was
measured. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page [52)) PWR_GrpAttrGetValue will continue to attempt to gather values for the entire
group, even if an error occurs for a subset of the members of that group.

int PWR_GrpAttrGetValue(PWR_Grp group,
PWR_AttrName attr,
void* values,
PWR_Time ts[],
PWR_Status* status);

56

Compare: Move�
artifact
This artifact was moved from page 53 of old document to page 53 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 56 of old document

Argument(s) Input Description

and/or
Output
PWR_Grp group Input The target group.
PWR_AttrName attr Input The target attribute to retrieve (get) from

each object in the target group. See section
[3.5]for a list of available attributes.

void* values Output The array of attribute values retrieved, one
value for each object in the target group.
This should point to caller-allocated stor-
age of at least (PWR_GrpGetNumObjs() *
8) bytes. Upon success, the value retrieved
for the object at index i within the group will
be located at address (values+(ix*8)).
PWR_Time ts[] Output The array of timestamps, one timestamp for
each value retrieved. This should point to
caller-allocated storage of at least (PWR_-
GrpGetNum0Objs () *sizeof (PWR_Time)).
Upon success, the timestamp of the value
retrieved for the object at index i within the
group will be located at ts[i]. Pass in NULL if
timestamps are not needed.

PWR_Status* status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not

needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR _GrpAttrSetValue()

The PWR_GrpAttrSetValue function is provided to set the value of a single specified attribute
(PWR_AttrName attr) of each object in a specified group — set a single attribute value on mul-
tiple objects. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page [52)) PWR_GrpAttrSetValue will continue to attempt to set values for the entire group,
even if an error occurs for a subset of the members of that group.

57

Compare: Move�
artifact
This artifact was moved from page 54 of old document to page 54 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 57 of old document

int PWR_GrpAttrSetValue(PWR_Grp group,
PWR_AttrName attr,
const voidx* value,
PWR_Status* status);

Argument(s) Input Description
and/or
Output
PWR_Grp group Input The target group.
PWR_AttrName attr Input The target attribute to set for each object in

the target group. See section [3.5]for a list of
available attributes.

const void* value Input The pointer to a single 8 byte attribute value
to set for each object in the target group.
PWR_Status* status Output Upon PWR_RET_FAILURE, status contains

information about each failure that occurred.
Pass in NULL if failure information is not

needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR_GrpAttrGetValues()

The PWR_GrpAttrGetValues function is provided to get the value of multiple specified attributes
listed in the PWR_AttrName attrs[] array from each object in a specified group — get multiple
attribute values from multiple objects. The timestamps returned in the PWR_Time ts[] array
should accurately represent, and correspond sequentially, with the time each value returned was
measured. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page [52)) PWR_GrpAttrGetValues will continue to attempt to gather values for the entire
group, even if an error occurs for a subset of the members or attributes requested in the object

group.

int PWR_GrpAttrGetValues(PWR_Grp group,
int count,
const PWR_AttrName attrs[],
void* values,
PWR_Time ts[],
PWR_Status* status);

38

Compare: Move�
artifact
This artifact was moved from page 55 of old document to page 55 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 58 of old document

Argument(s) Input Description

and/or
Output
PWR_Grp group Input The target group.
int count Input The number of elements in the attrs[] ar-
ray.
const PWR_AttrName Input The array specifying the set of target at-
attrs[] tributes to read for each object in the target
group. See section [3.5]for a list of available
attributes.
void* values Output The array of attribute values retrieved. This

should point to caller-allocated storage of
at least (PWR_GrpGetNumObjs () *count*8)
bytes. Upon success, the value read for at-
tribute attrs[i] for the object at index j
within the group will be located at address
(values+(j*xcount*8)+(ix*8)).

PWR_Time ts[] Output The array of timestamps, one timestamp for
each value retrieved. This should point to
caller-allocated storage of at least (PWR_-
GrpGetNumObjs () *count*sizeof (PWR_-
Time)). Upon success, the timestamp of the
value retrieved for attribute attrs[i] for
the object at index j within the group will
be located at ts[(j*count)+i1]. Pass in NULL if
timestamps are not needed.

PWR_Status* status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not

needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR_GrpAttrSetValues()

The PWR_GrpAttrSetValues function is provided to set the value of multiple specified attributes
listed in the (PWR_AttrName attrs[]) array of each object in a specified group — set multiple
attribute values on multiple objects. If the function fails for one or more attributes, the PWR_-
Status status structure returned can be examined for additional information regarding the fail-

59

Compare: Move�
artifact
This artifact was moved from page 56 of old document to page 56 of this document

Compare: Move�
artifact
This artifact was moved from page 59 of old document

ure using PWR_StatusPopError (see page[§2)) PWR_GrpAttrSetValues will continue to attempt
to set values for the entire group and requested attributes, even if an error occurs for a subset of the
members or attributes of that object group.

int PWR_GrpAttrSetValues(PWR_Grp group,
int count,
const PWR_AttrName attrs[],
const void* values,
PWR_Status* status);

Argument(s) Input Description
and/or
Output
PWR_Grp group Input The target group.
int count Input The number of elements in the attrs[] and
*values arrays.
const PWR_AttrName Input The array specifying the set of target at-
attrs(] tributes to set for each object in the target
group. See section [3.5]for a list of available
attributes.
const voidx* values Input The array of attribute values to set for each

object in the group. The value to write to
attribute attrs[i] of each object is located
at address (values+(i*8)).

PWR_Status* status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not

needed.
Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status* status to determine the operations that
failed. All other operations succeeded.

4.5 Metadata Functions

The metadata functions provide an interface for getting more descriptive information about an
object or attribute, such as estimated measurement accuracy or the list of valid values for a given
attribute. This information is often useful for getting a better understanding of the meaning of
objects and attributes and how to interpret the values read from attributes. While most metadata

60

Compare: Move�
artifact
This artifact was moved from page 57 of old document to page 57 of this document

Compare: Replace�
text
[Old text]: "49)."
[New text]: "52)."

Compare: Move�
artifact
This artifact was moved from page 60 of old document

is read-only information, some metadata is potentially configurable, such as the underlying power
sampling rate used to calculate PWNR_ATTR_ENERGY values.

Table 4.2) on page |32} lists the available types of metadata. Not all of the metadata items listed
will be available for every object and attribute pair. The exact set is dependent on the capabilities
of the underlying hardware and Power API implementation. If a requested metadata item is not
available a PWNR_RET_NO_ATTRIB error is returned at runtime.

The majority of metadata items will require that both an object instance and attribute name
pair be specified, but a few may be defined for object instances alone. For example, the metadata
strings PWR_MD_NAME, PWR_MD_DESC, and PWR_MD_VENDOR_INFO may be available for individual
object instances, with no associated attribute name specified. In these cases, the attribute name
requested should be set to PWR_ATTR_NOT_SPECIFIED. One important use case for these infor-
mational strings, especially the PWR_MD_VENDOR_INFO string, is for a Power API user to capture
these strings with each run to record configuration and provenance information. For example, a
user may chose to log the PWR_MD_VENDOR_INFO string for the top-level platform object in the
output of each run.

The metadata interface consists of three functions. The PWR_ObjAttrGetMeta and PWR_-
ObjAttrSetMeta functions allow metadata values to be retrieved and set, respectively. The third
function, PWR_MetaValueAtIndex, provides a way to enumerate through an attribute’s list of
available values. This is useful for attributes that have a small, well-defined set of discrete values
(e.g., PWR_ATTR_PSTATE). It is expected that where a set of discrete values can be described in
a logical order that the index ordering is from smallest (lowest) to largest (highest) value. The
remainder of this section describes the metadata functions in more detail.

Function Prototype for PWR_ObjAttrGetMeta()

The PWR_ObjAttrGetMeta function returns the requested metadata item for the specified object
or object and attribute name pair. The caller must allocate enough storage to hold the returned
metadata value and pass a pointer to the storage in the value argument. The required size can
be determined by consulting the type column of Table In the case of string metadata items
(i.e., type char), the required string length can be determined by getting the appropriate length
metadata item, which is the original metadata name with the _LEN suffix added. For example, the
required string length for the PWR_MD_VENDOR_INFO string can be determined by retrieving the
PWR_MD_VENDOR_INFO_LEN metadata item.

int PWR_ObjAttrGetMeta(PWR_Obj obj,
PWR_AttrName attr,
PWR_MetaName meta,
void* value);

61

Compare: Move�
artifact
This artifact was moved from page 58 of old document to page 58 of this document

Compare: Replace�
text
[Old text]: "30"
[New text]: "32"

Compare: Move�
artifact
This artifact was moved from page 61 of old document

Argument(s) Input Description

and/or
Output
PWR_Obj obj Input The target object.
PWR_AttrName attr Input The target attribute. See the PWR_AttrName

type definition in Section [3.5] for the list of
possible attributes. If object-only metadata
is being requested, this argument should be
set to PWR_ATTR_NOT_SPECIFIED.
PWR_MetaName meta Input The target metadata item to get. See the
PWR _MetaName type definition in Section
for the list of possible metadata items,
with detailed descriptions provided in Ta-
ble .2}

void* value Output Pointer to the caller allocated storage to hold
the value of the requested metadata item. See
Table [#.2] for type information.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS.

PWR_RET_NO_ATTRIB The attribute specified is not implemented.
PWR_RET_NO_META The metadata specified is not implemented.
PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _ObjAttrSetMeta()

The PWR_0ObjAttrSetMeta function sets the specified metadata item for the target object or object
and attribute name pair. The caller must pass a pointer to the new value for the specified metadata
item in the value argument. The required type for the value can be determined by consulting the
type column of Table In the case of string metadata items (i.e., type char *), the maximum
string length can be determined by getting the appropriate length metadata item, which is the
original metadata name with the _LEN suffix added. For example, the maximum string length for
the PWR_MD_VENDOR_INFO string can be determined by retrieving the PWR_MD_VENDOR_INFO_LEN
metadata item.

int PWR_ObjAttrSetMeta(PWR_Obj obj,
PWR_AttrName attr,
PWR_MetaName meta,
const void* value);

62

Compare: Move�
artifact
This artifact was moved from page 59 of old document to page 59 of this document

Compare: Move�
artifact
This artifact was moved from page 62 of old document

Argument(s) Input Description

and/or
Output

PWR_Obj obj Input The target object.

PWR_AttrName attr Input The target attribute. See the PWR_AttrName
type definition in Section [3.5] for the list of
possible attributes. If object-only metadata
is being set, this argument should be set to
PWR_ATTR_NOT_SPECIFIED.

PWR_MetaName meta Input The target metadata item to set. See the
PWR _MetaName type definition in Section
for the list of possible metadata items,
with detailed descriptions provided in Ta-
ble .2}

const void* value Input Pointer to the new value for the metadata
item. See Table [4.2]for type information.

Return Code(s) Description

PWR_RET_SUCCESS Upon SUCCESS.

PWR_RET_NO_ATTRIB The attribute specified is not implemented.

PWR_RET_NO_META The metadata specified is not implemented.

PWR_RET_READ_ONLY The metadata specified is not settable.

PWR_RET_BAD_VALUE The value specified is not valid.

PWR_RET_FAILURE Upon FAILURE.

Function Prototype for PWR _MetaValueAtIndex()

The PWR_MetaValueAtIndex function allows the available values for a given attribute to be
enumerated. It is assumed that the set of valid values is static and has size equal to the value
returned by the PWR_MD_NUM metadata item. Once the value of PWR_MD_NUM is known, PWR_-
MetaValueAtIndex () can be called repeatedly with index from O to PWR_MD_NUM - 1 to retrieve
the list of valid values for the target attribute. Each call will return the value at the specified index

as well as a human-readable string representing the value in human readable format.

If an attribute is not enumerable, then PWR_MD_NUM will return 0. In general any attribute that
does not have a small set of discrete valid values will return 0 when PWR_MD _NUM is requested,

to indicate that the attribute is not enumerable.

int PWR_MetaValueAtIndex(PWR_Obj obj,

PWR_AttrName attr,
unsigned int index,

void* value,

char* value_