Overview of the Power API

Motivation

Extreme scale computing requires that power and energy budgets be carefully managed. While much of the work of achieving
the power targets for Exascale computing will have to be addressed through hardware improvements, the job of utilizing the
tools made available through hardware will ultimately fall on system software and even applications.

Power caps are likely to be a reality on future top supercomputers. Practical power delivery concerns will impose some limits
while operational costs and power utility generation capabilities will further influence caps that could be dependent on time of
day use. Providing power capping capabilities on a system wide basis is not trivial and individual device power caps must be kept
consistent with the overall power allocations.

With power becoming a first-class resource in future systems, applications will have to adapt to this new constraint and balance
it with performance. Whenever possible power efficient algorithms can be adopted to increase performance for expected power
budgets. The first step to understanding the power/performance tradeoffs for different algorithms is the observation and study
of their current characteristics. The Power APl enables both the measurement and control of power at both basic and advanced
levels throughout an entire system, depending on the level of support available in hardware. As power constraints begin to
impact components other than CPUs, such flexibility will be a key factor in providing a large-scale whole system solution to
power management.

Prior Experience with Top Supercomputers

.. . “ h I hi ki ith ia Nati IL i
When the Red Storm platform was deployed Sandia in 2005, it ranked Cray has a long history working with Sandia National Laboratories
and a strong partnership around developing new technologies and

number 6 |n the TOp 500 ||St, and fEW |f any Other maChlneS OffE‘I’Ed even the advanced solutions. The foundation for Cray's roadmap in Advanced
most foundational of power measurement and control capabilities. Starting Power Management was built on the pioneering research jointly

ith a RAS-| i £ hat C had d. Sandia d | d conducted at Sandia Laboratories on the first Cray XT platform, Red
with a -level interface that Cray had exposed, Sandia developed energy- Storm. In addition, Cray wants to acknowledge Sandia’s leadership
saving methods for large-scale executions of production codes. These efforts role in driving vendors to use common API’s for power management

were recognized with the NNSA Environmental Stewardship Award and a"i control.” -Peter Ungaro, President and CE(?' Cray Inc.
influenced Cray toward subsequent power/energy interfaces in future 7 SAGE on 4096 cores: P-states 0,2 and 3 Faais == |
systems. However, these interfaces have been to-date vendor proprietary. =

ZZ: .l h |
Sandia operates a commodity test-bed cluster which each node is equipped ii
by Penguin Computing with out-of-band measurement hardware called s0
Powerlnsight, described later in more detail. This cluster allows us to do
research, to prototype power-aware code, and to emulate capabilities only [1
now emerging in large-scale systems such as the future ACES Trinity 800 ovoo ozeo | o300 oteo oo owoo o070

platform. Based on our experiences with large systems, relationships with Example application on Red Storm: SAGE. Running at P-state 2 using
4096 cores decreased energy usage by almost 50% while increasing

vepdors, and NNSA/ASC support, we propose the Power APl as a star.tmg execution time by less than 8% compared to the default (P-state 0).
point for common, vendor-neutral power measurement and control in HPC. Similar results observed on xNobel and AMG2006 using 6144 cores.

Comprehensive Interface Support

A key goal of the Power APl is to support all layers of the HPC
software stack. To identify key requirements, an intensive use
case study considered the interactions between the system
layers and between users and system layers, as shown in the

)

System J

diagram on the right. The use case document was reviewed by s =~ w
many community partners (as was the subsequent API). " H';?f,'JJ?,e
.

Informed by the use case study, the Power API defines a set of ,—\ z
interfaces. Each interface expresses interactions between two I::f‘:g:r) M::f;er Mg:f;e,>—
system layers (e.g., operating system / monitor & control) or
between a system layer and a person or entity (e.g., resource ¢)
manager / user). The capabilities and level of abstraction vary PGS llser ; Re:zgfce Rei’;zgfce\
by interface. While both the hardware / operating system ;/ ____Manager | Managg/
interface and the operating system / application interface .
expose power and energy readings, voltage and current is not T, > Mo":":tcosr o f MO*:":S)Sr &\
exposed at the operating system / application interface. r\ Control ___Control
The structure of each interface is the same, comprising the D HP+C5_ [HPCS >

. . . . 5 - Operating Operating
supported attributes and functions for that interface. This Accounting Suetarm i e
uniformity of design allows shared specification of shared core
functionality, in addition to the individual specifications of HpCs v v
functionality particular to each interface. It also enables the Application > HPCS
vendors working at multiple layers to maintain consistency in [Hardware J

their implementations of the API.
The Power API Interfaces and System Actors

U.S. DEPARTMENT OF

V//
ENERGY /1vA *=a SAND No. 2014-16629D

National Nuclear Security Administration

A Power API for the HPC Community

David DeBonis, Ryan E. Grant, Stephen L. Olivier, Michael Levenhagen, Suzanne M. Kelly, Kevin T. Pedretti, James H. Laros lli
Sandia National Laboratories, Albuquerque, New Mexico
{ddeboni, regrant, slolivi, mjleven, smkelly, ktpedre, jhlaros}@sandia.gov

API Design

The Power API provides a method of describing a given system through a collection of objects and a
discoverable hierarchy. The hierarchy of objects illustrates the basic objects in a system, which may be
heterogeneous. Other objects, such as memory or NICs or accelerators can be added to the object hierarchy

either as distinct levels or attached to an existing object. For example, a NIC could be attached to a node Q

object, being accessible to all other objects beneath the node in the hierarchy.

Each object in the Power API hierarchy has a set of associated attributes, e.g. PWR_ATTR_Energy and
PWR_ATTR_MaxPower, which allow for measurement and control of power related capabilities of
individual components or groups of components throughout the system. When measuring, the
applicable attributes are read when controlling they are written.

In order to provide a comprehensive measurement ability, statistics gathering is integrated into _a—"
the Power API. Statistics may be gathered on any object or attribute providing measurements.
Statistics can also be gathered over groups of objects, for example one could gather the
average power of a group of nodes over a given time. Statistics have two interfaces, one for
real-time measurement and another for gathering historical data from a data store. S PN
In order to be able to utilize the measurement and statistics from the Power APl a metadata
interface is provided that allows for more detailed information on objects. Such information T [
may contain how frequently internal sampling is performed for each measurement or how ey
accurate the measurements taken are expected to be. This enables easy comprehensive use of @
the Power API for measurement and control purposes o)

Power API Object Hierarchy

Interface Example

The following code example presents several fundamental concepts of the API: context, user role, object hierarchy, hierarchy
traversal, groups of objects, time stamps, object attributes, measurement and control. This code traverses the object hierarchy
to cabinet 0 board 4, reads the current power cap for the board and sets the power cap to 500 watts if the current cap is greater
than 500 watts. Note that the implementation must determine how to split the 500 watt budget among the objects in the
hierarchy under the board. One could envision similar code in a utility program used by a system administrator.

PWR_Cntxt cntxt = PWR_Cntxtlnit(P?WR_CNTXT_DEFAULT, PWR_ROLE_ADMIN, “Admin CTX”);
PWR_Obj platform_obj = PWR_GetSelf(cntxt);
PWR_Grp cabinet_grp = PWR_ObjectGetChildren(platformObj);
PWR_Obj cabinetO_obj=PWR_GrpGetObjBylndex(0);
PWR_Grp cab0_board_grp = PWR_ObjectGetChildren(cabinet0_obj);
PWR_Obj cab0_board4 = PWR_ObjectGetObjByindex(4);
double value;
PWR_Time time;
PWR_ODbjAttrGetValue(cab0_brd4, PWR_MAX_PCAP, &value, &time);
If (value >500.0) {
PWR_ObjAttrSetValue(cab0_brd4, PWR_MAX_PCAP, 500.0);

}

Interface code example illustrating the use of the Power API for a simple grouped power capping

Progress, Partners, and Extreme Scale Deployment

Partner organizations reviewed the APl document in July 2014 and subsequently the following September. Prototyping on test-
bed platforms is an on-going effort. Implementation of the API will be included in the deployment of the $174 million dollar
ASC/NNSA Trinity platform. Moreover, we anticipate and encourage continuing community feedback to drive refinement of the
API. It serves as a first step toward a vendor-neutral standardization of power measurement and control, which is sorely
needed as the community grapples with the power and energy challenges of extreme scale HPC.

. B ..) A ' - Bt —
/\ D = = e m | Hl Lawrence Livermore

=] " Los Alamos National Laboratory

in tel e i ===7= Sandia 2

I Adaptive
PENGUIN COMPUTING National
- Laboratories
NATIONAL RENEWABLE ENERGY LABORATORY Egm Georg ia !
Tech

AMD K7}

Powerlnsight — Power Measurement at Scale

Emulation and testing of energy features of hardware is important for
understanding the viability and usability of attributes exposed through the
Power API. An early mechanism to exercise these features is through the
Power API prototype.

%@’ﬁ\
C‘ a1l " "

Each node of a 102-node cluster has been instrumented with Powerlnsight

L

allowing researchers to collect component level power and energy Yy L™

measurements. Additionally, collections are offloaded to the embedded oot oo | PIAPI PROKY FIAPI AGENT
ARM microprocessor allowing for out-of-band analysis and data reduction — PIAPI NATIVE
without impacting the node(s) under test. ‘ ' Y v

Powerlnsight

N = Harness SPI CoMM DEVICE CONFIG

An in-house software stack (PIAPI) allows us to control and communicate T
the collection rate and direct or intercept sample reports. The PIAPI also e
provides an internal framework for emulating future hardware power
features on the embedded device and accommodates either push or pull
modes of operation; subscribe to a collection request or poll instantaneous
or hardware emulated counter data.

The PIAPI stack is presented through the plugin interface of the Power API
prototype, allowing access through attributes. An experiment where we
compare the energy efficiency of memory operations using small vs. large
pages is shown below.

1 26+09 T T T T T 80 T T T T T T T T T 80 T T T T T T
4-KB Pages (CPU) —+— — p=
T 2-MB Pages (CPU) |
1e+09 4-KB Pages (Mem) - i
2-MB Pages (Mem) &

2 %
=1 8e+08 | ™.
o
2 ~
(2] s
IS 6e+08 | :
5 x .
) | “Eemogog
OQ' 4e+08 7

2e+08 | *

0 10 20 30 40 50 60 70 80 90 100

0 | | SETE SO0 2 g
128K 512K 2M 8M 32M 128M 512M 2G 8G Time (s)

Table Size (Bytes)

Comparison of small (4 KB) vs. large (2 MB) virtual memory page Power profile of CPU and memory on Intel vy Bridge architecture for 16 MB table size using small (left) and
size for a random access micro-benchmark large (right) page sizes sampling at 10 Hz using out-of-band collection with Powerlnsight

Power and Reliability

The intersection of power consumption and system reliability is an area of great interest for future extreme scale systems. The
power consumption of reliability mechanisms is an important factor in considering overall system efficiency. Traditional
checkpointing with local SSD checkpoints that are written out to a persistent store is a method that has been proposed for
extreme scale systems.

Reliability can impact the gains made through runtime energy savings methods as well. Due to failure and recovery, the
increased runtime that energy saving methods typically incur can result in resilience events like a failure occurring during the
application runtime that without the lengthen runtime would not have been seen. Alternatively, extended runtime may result in
more checkpoints being taken, also impacting the total energy usage of the application [2].

The Power API enables research in the intersecting areas of power, reliability and performance tradeoffs by providing a
comprehensive method of gathering power related data as well as providing control capabilities to investigate possible methods
of solving this difficult problem. The estimated increase in energy due to reliability of several runtime energy savings methods [2]
based on their published performance and energy consumption results is illustrated below. Finally, we show real power
measurements through the Power APl compatible Powerlnsight devices showing the related power measurements during a
checkpoint in a 4-node system during a store to topologically close network mounted SSDs with differing CPU frequencies [1].

BULR.Co RERCRFTR0 B AMGIRSE: [550000 sockets & 250000 sockets - 1000000 sockets |

[
=)

[

N

o

)

Power for system (watts)

~N

E N | S8 uh

0 ™
CPU MISER PART ECOD NCSU Jitter Adagio

% Increase in Energy
-
% Energy Overhead due to reliability

2 A d
o ML NET e wil u‘ J J J

2 3 5 6 7 8 9 10
-2 % Increase in Runtime o 100 200 300 400 500 600 700

Estimates of the increase in energy for given runtime Energy overhead due to reliability when runtime is
power saving methods due to resilience increased in large socket count systems

three checkpoints to local SSD

Sandia

National
Laboratories

Associated R &D Efforts

Network Power Management

The performance of high-speed networks on power capped systems, and those with large numbers of smaller slower compute
cores is a topic of interest. Exploring alternative networking approaches, like onloaded networks versus offloaded networks in
the context of light-weight cores can be of use in deciding which approaches are suitable for next generation systems. The
difference in network bandwidth provided by two different InfiniBand network approaches has been examined using an
onloading approach and an offloading approach with different CPU frequencies on an Intel Xeon lvy Bridge processor server.

Power management of networks may become a reality in future systems, which will require advanced techniques to ensure that
latency and bandwidth requirements are met for applications while attempting to reduce network power consumption in
underutilized network links.

The Power API enables network power research by allowing for easy access to per-component measurement and control on
systems with appropriate hardware sampling support. Through the use of the Power APl not only can methods be easily
researched, but they can be easily deployed as the research development environment and production environment are similar.

Onload Stream Bandwidth (Put) With Power Offload Stream Bandwidth (Put) With Power

25000 - 140 25000 - 140
130 - 130

20000 i 420 20000

- 120
- 110
- 100
- 90

- - 110 .
15000 | 15000 { =7~
- 100

Power (W)

-——== 90
10000

Bandwidth (Mbps)
Power (W)
Bandwidth (Mbps)

10000 =y
- 80 __-80
- 70 5000 - 70

- 60

5000 1.
- 60

0

0

50
R X e B O Mo % Sy e % % & Sy B O o U Sy 2 R TS I Gy Gy o % Sy e % % & e By 6, Ty O S, 2
e R % %;%.7;,4—»1—4—4—5‘4_94_74_%,& 2y (IS 7@06‘6,/34—4-»1—4-6;?_94_5;?_@ /L,;

&
Message Size (bytes) Message Size (bytes)

7 —— 29GHz —— GHz power === iz —— 29GHz ——— 1.4 GHz power ===

—— 34GHz —_— GHz power - 3.4 GHz power === 19GHz — 34GHz ——

Offloaded IB with varying CPU frequency

pu— Hz power ———

8GHz

Concurrency Throttling

Dynamic run time adaptation is one anticipated system software approach to power
management. In this study, we consider the use of the Qthreads lightweight threading POW?r Usag? (27 Noées)
library as a power-aware OpenMP run time. Qthreads transforms work (e.g., loop 3600 |- " 1
iterations) into tasks and distributes those tasks among long-running pthreads (one

per core) for execution. Cores residing on the same chip contend for resources, e.g.,

cache and memory bandwidth. Memory bandwidth may become saturated. In that sss0 | . "]
case, throttling some cores into a low power regime may save power, and sometimes | | |

even improve performance by easing memory contention.

3550 —

3500 -

3450 —

Power (W)

3300

12 threads Dyn 16 threads

Execution Time (27 Nodes)

©
c

The goal of the Maestro project is to enable Qthreads to make throttling decisions
online using power and performance counter data. A daemon, RCRTool, gathers data
from the hardware counters and posts it to a blackboard. Qthreads checks the data at
intervals. If it detects that memory is saturated and power usage is high, it applies
clock modulation to one or more cores on each chip. Power usage of those cores is i

reduced, and the run time scheduler stops assigning them work. At a later time, the 12 threads Dyn 16 threads
RCRTool data may show a drop in the memory and power usage. In that case, the
cores may be returned to full speed and assigned work once again.

@
©
T
1

x
X
X

Time (sec.)
T T T T
* 0K

Il Il Il

@
a

o]
@

Comparison of RCR Energy Savings for LULESH

RCR Energy © Adjusted Reliable Energy

o4
©
«

An evaluation of the LULESH hydrodynamics mini-application running hybrid MPI with
the Maestro OpenMP on each node showed both power/energy savings and
improved performance. Projected execution times factoring in reliability are even
lower since fewer failures are predicted when programs finish quicker. Maestro
required privileged access to machine-specific registers for counter data and clock
modulation. The Power API presents such measurement and control mechanisms in a ;
vendor-neutral interface, and the implementation would manage access to them. 08 — —

8 nodes 27 nodes

0.922

o
©

0.893 S

0.870

o
o
o

LULESH Energy Normalized to Baseline

References

1. B. Mills, R. E. Grant, K. B. Ferreira and R. Riesen, “Evaluating energy savings for checkpoint/restart,” in Proceedings of the 1st International Workshop on Energy Efficient
Supercomputing, ACM, 2013, p. 8.

2. R.E.Grant,S. L. Olivier, J. H. Laros, A. Porterfield, and R. Brightwell, “Metrics for evaluating energy saving techniques for resilient HPC systems,” in Proceedings of the 28th
International Parallel and Distributed Processing Symposium Workshops. IEEE, 2014, p. 8.

3. James H Laros, Suzanne M Kelly, Steven Hammond, Ryan Elmore, and Kristin Munch. Power/Energy Use Cases for High Performance Computing. Internal SAND Report
SAND2013-10789. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/ UseCase-powapi.pdf.

4. Allan Porterfield, Stephen Olivier, Sridutt Bhalachandra, Jan Prins. Power Measurement and Concurrency Throttling for Energy Reduction in OpenMP Programs. Proc. of 8th IEEE
Workshop on High-Performance, Power-Aware Computing (HP-PAC 2013). IEEE: Boston, MA, May 2013.

5. J. H. Laros, P. Pokorny, D. DeBonis, “Powerlnsight — A Commodity Power Measurement Capability,” The Third International Workshop on Power Measurement and Profiling in
conjunction with IEEE IGCC 2013, Arlington VA, June 2013

6. Powerlnsight (http://www.penguincomputing.com/resources/press-releases/penguin-computing-releases-new-power-monitoring-device)

7. Advanced Systems Technology Test Beds at SNL (http://www.sandia.gov/asc/computational_systems/HAAPS.html)

M .V &L&>4 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

